
Equilibrium Models

Thomas J. Sargent and John Stachurski

May 03, 2024

CONTENTS

I Multiple Agent Models 3
1 Uncertainty Traps 5

1.1 Overview . 5
1.2 The Model . 6
1.3 Implementation . 9
1.4 Results . 10
1.5 Exercises . 11

2 The Aiyagari Model 19
2.1 Overview . 19
2.2 The Economy . 20
2.3 Firms . 21
2.4 Code . 22

3 Default Risk and Income Fluctuations 29
3.1 Overview . 29
3.2 Structure . 30
3.3 Equilibrium . 32
3.4 Computation . 33
3.5 Results . 39
3.6 Exercises . 40

4 Globalization and Cycles 49
4.1 Overview . 49
4.2 Key Ideas . 50
4.3 Model . 51
4.4 Simulation . 53
4.5 Exercises . 63

5 Coase’s Theory of the Firm 67
5.1 Overview . 67
5.2 The Model . 69
5.3 Equilibrium . 71
5.4 Existence, Uniqueness and Computation of Equilibria . 72
5.5 Implementation . 74
5.6 Exercises . 78

II Auctions & Other Applications 81
6 First-Price and Second-Price Auctions 83

i

6.1 First-Price Sealed-Bid Auction (FPSB) . 83
6.2 Second-Price Sealed-Bid Auction (SPSB) . 84
6.3 Characterization of SPSB Auction . 84
6.4 Uniform Distribution of Private Values . 85
6.5 Setup . 85
6.6 First price sealed bid auction . 85
6.7 Second Price Sealed Bid Auction . 86
6.8 Python Code . 86
6.9 Revenue Equivalence Theorem . 88
6.10 Calculation of Bid Price in FPSB . 90
6.11 𝜒2 Distribution . 91
6.12 5 Code Summary . 94
6.13 References . 99

7 Multiple Good Allocation Mechanisms 101
7.1 Overview . 101
7.2 Ascending Bids Auction for Multiple Goods . 101
7.3 A Benevolent Planner . 102
7.4 Equivalence of Allocations . 102
7.5 Ascending Bid Auction . 102
7.6 Pseudocode . 103
7.7 An Example . 105
7.8 A Python Class . 113
7.9 Robustness Checks . 122
7.10 A Groves-Clarke Mechanism . 134
7.11 An Example Solved by Hand . 135
7.12 Another Python Class . 138

III Rational Expectation Models 145
8 Cass-Koopmans Model 147

8.1 Overview . 147
8.2 The Model . 148
8.3 Planning Problem . 150
8.4 Shooting Algorithm . 153
8.5 Setting Initial Capital to Steady State Capital . 157
8.6 A Turnpike Property . 159
8.7 A Limiting Infinite Horizon Economy . 160
8.8 Concluding Remarks . 163

9 Cass-Koopmans Competitive Equilibrium 165
9.1 Overview . 165
9.2 Review of Cass-Koopmans Model . 166
9.3 Competitive Equilibrium . 167
9.4 Market Structure . 168
9.5 Firm Problem . 168
9.6 Household Problem . 169
9.7 Computing a Competitive Equilibrium . 171
9.8 Yield Curves and Hicks-Arrow Prices . 179

10 Rational Expectations Equilibrium 181
10.1 Overview . 181
10.2 Rational Expectations Equilibrium . 184
10.3 Computing an Equilibrium . 187

ii

10.4 Exercises . 189

11 Stability in Linear Rational Expectations Models 195
11.1 Overview . 196
11.2 Linear Difference Equations . 196
11.3 Illustration: Cagan’s Model . 198
11.4 Some Python Code . 200
11.5 Alternative Code . 202
11.6 Another Perspective . 204
11.7 Log money Supply Feeds Back on Log Price Level . 206
11.8 Big 𝑃 , Little 𝑝 Interpretation . 210
11.9 Fun with SymPy . 212

12 Markov Perfect Equilibrium 215
12.1 Overview . 215
12.2 Background . 216
12.3 Linear Markov Perfect Equilibria . 217
12.4 Application . 219
12.5 Exercises . 224

13 Knowing the Forecasts of Others 233
13.1 Introduction . 233
13.2 The Setting . 235
13.3 Tactics . 235
13.4 Equilibrium Conditions . 237
13.5 Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡 . 238
13.6 Guess-and-Verify Tactic . 241
13.7 Equilibrium with One Noisy Signal on 𝜃𝑡 . 242
13.8 Equilibrium with Two Noisy Signals on 𝜃𝑡 . 247
13.9 Key Step . 251
13.10 An observed common shock benchmark . 251
13.11 Comparison of All Signal Structures . 253
13.12 Notes on History of the Problem . 255

IV Other 257
14 Troubleshooting 259

14.1 Fixing Your Local Environment . 259
14.2 Reporting an Issue . 260

15 References 261

16 Execution Statistics 263

Bibliography 265

Index 269

iii

iv

Equilibrium Models

This website presents a set of lectures on equilibrium economic models.
• Multiple Agent Models

– Uncertainty Traps

– The Aiyagari Model

– Default Risk and Income Fluctuations

– Globalization and Cycles

– Coase’s Theory of the Firm

• Auctions & Other Applications
– First-Price and Second-Price Auctions

– Multiple Good Allocation Mechanisms

• Rational Expectation Models
– Cass-Koopmans Model

– Cass-Koopmans Competitive Equilibrium

– Rational Expectations Equilibrium

– Stability in Linear Rational Expectations Models

– Markov Perfect Equilibrium

– Knowing the Forecasts of Others

• Other
– Troubleshooting

– References

– Execution Statistics

CONTENTS 1

Equilibrium Models

2 CONTENTS

Part I

Multiple Agent Models

3

CHAPTER

ONE

UNCERTAINTY TRAPS

Contents

• Uncertainty Traps

– Overview

– The Model

– Implementation

– Results

– Exercises

1.1 Overview

In this lecture, we study a simplified version of an uncertainty traps model of Fajgelbaum, Schaal and Taschereau-
Dumouchel [Fajgelbaum et al., 2015].
The model features self-reinforcing uncertainty that has big impacts on economic activity.
In the model,

• Fundamentals vary stochastically and are not fully observable.
• At any moment there are both active and inactive entrepreneurs; only active entrepreneurs produce.
• Agents – active and inactive entrepreneurs – have beliefs about the fundamentals expressed as probability distribu-
tions.

• Greater uncertainty means greater dispersions of these distributions.
• Entrepreneurs are risk-averse and hence less inclined to be active when uncertainty is high.
• The output of active entrepreneurs is observable, supplying a noisy signal that helps everyone inside the model infer
fundamentals.

• Entrepreneurs update their beliefs about fundamentals using Bayes’ Law, implemented via Kalman filtering.
Uncertainty traps emerge because:

• High uncertainty discourages entrepreneurs from becoming active.
• A low level of participation – i.e., a smaller number of active entrepreneurs – diminishes the flow of information
about fundamentals.

5

https://dle.quantecon.org/kalman.html

Equilibrium Models

• Less information translates to higher uncertainty, further discouraging entrepreneurs from choosing to be active,
and so on.

Uncertainty traps stem from a positive externality: high aggregate economic activity levels generates valuable information.
Let’s start with some standard imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np

1.2 The Model

The original model described in [Fajgelbaum et al., 2015] has many interesting moving parts.
Here we examine a simplified version that nonetheless captures many of the key ideas.

1.2.1 Fundamentals

The evolution of the fundamental process {𝜃𝑡} is given by

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜎𝜃𝑤𝑡+1

where
• 𝜎𝜃 > 0 and 0 < 𝜌 < 1
• {𝑤𝑡} is IID and standard normal

The random variable 𝜃𝑡 is not observable at any time.

1.2.2 Output

There is a total �̄� of risk-averse entrepreneurs.
Output of the 𝑚-th entrepreneur, conditional on being active in the market at time 𝑡, is equal to

𝑥𝑚 = 𝜃 + 𝜖𝑚 where 𝜖𝑚 ∼ 𝑁 (0, 𝛾−1
𝑥) (1.1)

Here the time subscript has been dropped to simplify notation.
The inverse of the shock variance, 𝛾𝑥, is called the shock’s precision.
The higher is the precision, the more informative 𝑥𝑚 is about the fundamental.
Output shocks are independent across time and firms.

6 Chapter 1. Uncertainty Traps

Equilibrium Models

1.2.3 Information and Beliefs

All entrepreneurs start with identical beliefs about 𝜃0.
Signals are publicly observable and hence all agents have identical beliefs always.
Dropping time subscripts, beliefs for current 𝜃 are represented by the normal distribution 𝑁(𝜇, 𝛾−1).
Here 𝛾 is the precision of beliefs; its inverse is the degree of uncertainty.
These parameters are updated by Kalman filtering.
Let

• 𝕄 ⊂ {1, … , �̄�} denote the set of currently active firms.
• 𝑀 ∶= |𝕄| denote the number of currently active firms.
• 𝑋 be the average output 1

𝑀 ∑𝑚∈𝕄 𝑥𝑚 of the active firms.
With this notation and primes for next period values, we can write the updating of the mean and precision via

𝜇′ = 𝜌𝛾𝜇 + 𝑀𝛾𝑥𝑋
𝛾 + 𝑀𝛾𝑥

(1.2)

𝛾′ = (𝜌2

𝛾 + 𝑀𝛾𝑥
+ 𝜎2

𝜃)
−1

(1.3)

These are standard Kalman filtering results applied to the current setting.
Exercise 1 provides more details on how (1.2) and (1.3) are derived and then asks you to fill in remaining steps.
The next figure plots the law of motion for the precision in (1.3) as a 45 degree diagram, with one curve for each 𝑀 ∈
{0, … , 6}.
The other parameter values are 𝜌 = 0.99, 𝛾𝑥 = 0.5, 𝜎𝜃 = 0.5
Points where the curves hit the 45 degree lines are long-run steady states for precision for different values of 𝑀 .
Thus, if one of these values for 𝑀 remains fixed, a corresponding steady state is the equilibrium level of precision

• high values of 𝑀 correspond to greater information about the fundamental, and hence more precision in steady
state

• low values of 𝑀 correspond to less information and more uncertainty in steady state
In practice, as we’ll see, the number of active firms fluctuates stochastically.

1.2.4 Participation

Omitting time subscripts once more, entrepreneurs enter the market in the current period if

𝔼[𝑢(𝑥𝑚 − 𝐹𝑚)] > 𝑐 (1.4)

Here
• the mathematical expectation of 𝑥𝑚 is based on (1.1) and beliefs 𝑁(𝜇, 𝛾−1) for 𝜃
• 𝐹𝑚 is a stochastic but pre-visible fixed cost, independent across time and firms
• 𝑐 is a constant reflecting opportunity costs

1.2. The Model 7

Equilibrium Models

8 Chapter 1. Uncertainty Traps

Equilibrium Models

The statement that 𝐹𝑚 is pre-visible means that it is realized at the start of the period and treated as a constant in (1.4).
The utility function has the constant absolute risk aversion form

𝑢(𝑥) = 1
𝑎 (1 − exp(−𝑎𝑥)) (1.5)

where 𝑎 is a positive parameter.
Combining (1.4) and (1.5), entrepreneur 𝑚 participates in the market (or is said to be active) when

1
𝑎 {1 − 𝔼[exp (−𝑎(𝜃 + 𝜖𝑚 − 𝐹𝑚))]} > 𝑐

Using standard formulas for expectations of lognormal random variables, this is equivalent to the condition

𝜓(𝜇, 𝛾, 𝐹𝑚) ∶= 1
𝑎 (1 − exp(−𝑎𝜇 + 𝑎𝐹𝑚 +

𝑎2 (1
𝛾 + 1

𝛾𝑥
)

2)) − 𝑐 > 0 (1.6)

1.3 Implementation

We want to simulate this economy.
As a first step, let’s put together a class that bundles

• the parameters, the current value of 𝜃 and the current values of the two belief parameters 𝜇 and 𝛾
• methods to update 𝜃, 𝜇 and 𝛾, as well as to determine the number of active firms and their outputs

The updating methods follow the laws of motion for 𝜃, 𝜇 and 𝛾 given above.
The method to evaluate the number of active firms generates 𝐹1, … , 𝐹�̄� and tests condition (1.6) for each firm.
The init method encodes as default values the parameters we’ll use in the simulations below

class UncertaintyTrapEcon:

def __init__(self,
a=1.5, # Risk aversion
γ_x=0.5, # Production shock precision
ρ=0.99, # Correlation coefficient for θ
σ_θ=0.5, # Standard dev of θ shock
num_firms=100, # Number of firms
σ_F=1.5, # Standard dev of fixed costs
c=-420, # External opportunity cost
μ_init=0, # Initial value for μ
γ_init=4, # Initial value for γ
θ_init=0): # Initial value for θ

== Record values ==
self.a, self.γ_x, self.ρ, self.σ_θ = a, γ_x, ρ, σ_θ
self.num_firms, self.σ_F, self.c, = num_firms, σ_F, c
self.σ_x = np.sqrt(1/γ_x)

== Initialize states ==
self.γ, self.μ, self.θ = γ_init, μ_init, θ_init

def ψ(self, F):
temp1 = -self.a * (self.μ - F)

(continues on next page)

1.3. Implementation 9

https://en.wikipedia.org/wiki/Log-normal_distribution

Equilibrium Models

(continued from previous page)

temp2 = self.a**2 * (1/self.γ + 1/self.γ_x) / 2
return (1 / self.a) * (1 - np.exp(temp1 + temp2)) - self.c

def update_beliefs(self, X, M):
"""
Update beliefs (μ, γ) based on aggregates X and M.
"""
Simplify names
γ_x, ρ, σ_θ = self.γ_x, self.ρ, self.σ_θ
Update μ
temp1 = ρ * (self.γ * self.μ + M * γ_x * X)
temp2 = self.γ + M * γ_x
self.μ = temp1 / temp2
Update γ
self.γ = 1 / (ρ**2 / (self.γ + M * γ_x) + σ_θ**2)

def update_θ(self, w):
"""
Update the fundamental state θ given shock w.
"""
self.θ = self.ρ * self.θ + self.σ_θ * w

def gen_aggregates(self):
"""
Generate aggregates based on current beliefs (μ, γ). This
is a simulation step that depends on the draws for F.
"""
F_vals = self.σ_F * np.random.randn(self.num_firms)
M = np.sum(self.ψ(F_vals) > 0) # Counts number of active firms
if M > 0:

x_vals = self.θ + self.σ_x * np.random.randn(M)
X = x_vals.mean()

else:
X = 0

return X, M

In the results below we use this code to simulate time series for the major variables.

1.4 Results

Let’s look first at the dynamics of 𝜇, which the agents use to track 𝜃
We see that 𝜇 tracks 𝜃 well when there are sufficient firms in the market.
However, there are times when 𝜇 tracks 𝜃 poorly due to insufficient information.
These are episodes where the uncertainty traps take hold.
During these episodes

• precision is low and uncertainty is high
• few firms are in the market

To get a clearer idea of the dynamics, let’s look at all the main time series at once, for a given set of shocks
Notice how the traps only take hold after a sequence of bad draws for the fundamental.

10 Chapter 1. Uncertainty Traps

Equilibrium Models

Thus, the model gives us a propagation mechanism that maps bad random draws into long downturns in economic activity.

1.5 Exercises

Exercise 1.5.1
Fill in the details behind (1.2) and (1.3) based on the following standard result (see, e.g., p. 24 of [Young and Smith,
2005]).
Fact Let x = (𝑥1, … , 𝑥𝑀) be a vector of IID draws from common distribution 𝑁(𝜃, 1/𝛾𝑥) and let ̄𝑥 be the sample
mean. If 𝛾𝑥 is known and the prior for 𝜃 is 𝑁(𝜇, 1/𝛾), then the posterior distribution of 𝜃 given x is

𝜋(𝜃 | x) = 𝑁(𝜇0, 1/𝛾0)

where

𝜇0 = 𝜇𝛾 + 𝑀 ̄𝑥𝛾𝑥
𝛾 + 𝑀𝛾𝑥

and 𝛾0 = 𝛾 + 𝑀𝛾𝑥

Solution to Exercise 1.5.1
This exercise asked you to validate the laws of motion for 𝛾 and 𝜇 given in the lecture, based on the stated result about
Bayesian updating in a scalar Gaussian setting. The stated result tells us that after observing average output 𝑋 of the 𝑀
firms, our posterior beliefs will be

𝑁(𝜇0, 1/𝛾0)

1.5. Exercises 11

Equilibrium Models

12 Chapter 1. Uncertainty Traps

Equilibrium Models

where

𝜇0 = 𝜇𝛾 + 𝑀𝑋𝛾𝑥
𝛾 + 𝑀𝛾𝑥

and 𝛾0 = 𝛾 + 𝑀𝛾𝑥

If we take a random variable 𝜃 with this distribution and then evaluate the distribution of 𝜌𝜃+𝜎𝜃𝑤where𝑤 is independent
and standard normal, we get the expressions for 𝜇′ and 𝛾′ given in the lecture.

Exercise 1.5.2
Modulo randomness, replicate the simulation figures shown above.

• Use the parameter values listed as defaults in the init method of the UncertaintyTrapEcon class.

Solution to Exercise 1.5.2
First, let’s replicate the plot that illustrates the law of motion for precision, which is

𝛾𝑡+1 = (𝜌2

𝛾𝑡 + 𝑀𝛾𝑥
+ 𝜎2

𝜃)
−1

Here 𝑀 is the number of active firms. The next figure plots 𝛾𝑡+1 against 𝛾𝑡 on a 45 degree diagram for different values
of 𝑀

econ = UncertaintyTrapEcon()
ρ, σ_θ, γ_x = econ.ρ, econ.σ_θ, econ.γ_x # Simplify names
γ = np.linspace(1e-10, 3, 200) # γ grid
fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(γ, γ, 'k-') # 45 degree line

for M in range(7):
γ_next = 1 / (ρ**2 / (γ + M * γ_x) + σ_θ**2)
label_string = f"$M = {M}$"
ax.plot(γ, γ_next, lw=2, label=label_string)

ax.legend(loc='lower right', fontsize=14)
ax.set_xlabel(r'γ', fontsize=16)
ax.set_ylabel(r"γ'", fontsize=16)
ax.grid()
plt.show()

1.5. Exercises 13

Equilibrium Models

The points where the curves hit the 45 degree lines are the long-run steady states corresponding to each 𝑀 , if that value
of 𝑀 was to remain fixed. As the number of firms falls, so does the long-run steady state of precision.
Next let’s generate time series for beliefs and the aggregates – that is, the number of active firms and average output

sim_length=2000

μ_vec = np.empty(sim_length)
θ_vec = np.empty(sim_length)
γ_vec = np.empty(sim_length)
X_vec = np.empty(sim_length)
M_vec = np.empty(sim_length)

μ_vec[0] = econ.μ
γ_vec[0] = econ.γ
θ_vec[0] = 0

(continues on next page)

14 Chapter 1. Uncertainty Traps

Equilibrium Models

(continued from previous page)

w_shocks = np.random.randn(sim_length)

for t in range(sim_length-1):
X, M = econ.gen_aggregates()
X_vec[t] = X
M_vec[t] = M

econ.update_beliefs(X, M)
econ.update_θ(w_shocks[t])

μ_vec[t+1] = econ.μ
γ_vec[t+1] = econ.γ
θ_vec[t+1] = econ.θ

Record final values of aggregates
X, M = econ.gen_aggregates()
X_vec[-1] = X
M_vec[-1] = M

First, let’s see how well 𝜇 tracks 𝜃 in these simulations

fig, ax = plt.subplots(figsize=(9, 6))
ax.plot(range(sim_length), θ_vec, alpha=0.6, lw=2, label=r"θ")
ax.plot(range(sim_length), μ_vec, alpha=0.6, lw=2, label=r"μ")
ax.legend(fontsize=16)
ax.grid()
plt.show()

1.5. Exercises 15

Equilibrium Models

Now let’s plot the whole thing together

fig, axes = plt.subplots(4, 1, figsize=(12, 20))
Add some spacing
fig.subplots_adjust(hspace=0.3)

series = (θ_vec, μ_vec, γ_vec, M_vec)
names = r'θ', r'μ', r'γ', r'M'

for ax, vals, name in zip(axes, series, names):
Determine suitable y limits
s_max, s_min = max(vals), min(vals)
s_range = s_max - s_min
y_max = s_max + s_range * 0.1
y_min = s_min - s_range * 0.1
ax.set_ylim(y_min, y_max)
Plot series
ax.plot(range(sim_length), vals, alpha=0.6, lw=2)
ax.set_title(f"time series for {name}", fontsize=16)
ax.grid()

plt.show()

16 Chapter 1. Uncertainty Traps

Equilibrium Models

1.5. Exercises 17

Equilibrium Models

If you run the code above you’ll get different plots, of course.
Try experimenting with different parameters to see the effects on the time series.
(It would also be interesting to experiment with non-Gaussian distributions for the shocks, but this is a big exercise since
it takes us outside the world of the standard Kalman filter)

18 Chapter 1. Uncertainty Traps

CHAPTER

TWO

THE AIYAGARI MODEL

Contents

• The Aiyagari Model

– Overview

– The Economy

– Firms

– Code

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

2.1 Overview

In this lecture, we describe the structure of a class of models that build on work by Truman Bewley [Bewley, 1977].
We begin by discussing an example of a Bewley model due to Rao Aiyagari [Aiyagari, 1994].
The model features

• Heterogeneous agents
• A single exogenous vehicle for borrowing and lending
• Limits on amounts individual agents may borrow

The Aiyagari model has been used to investigate many topics, including
• precautionary savings and the effect of liquidity constraints [Aiyagari, 1994]
• risk sharing and asset pricing [Heaton and Lucas, 1996]
• the shape of the wealth distribution [Benhabib et al., 2015]
• etc., etc., etc.

Let’s start with some imports:

19

Equilibrium Models

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
from quantecon.markov import DiscreteDP
from numba import jit

2.1.1 References

The primary reference for this lecture is [Aiyagari, 1994].
A textbook treatment is available in chapter 18 of [Ljungqvist and Sargent, 2018].
A continuous time version of the model by SeHyoun Ahn and Benjamin Moll can be found here.

2.2 The Economy

2.2.1 Households

Infinitely lived households / consumers face idiosyncratic income shocks.
A unit interval of ex-ante identical households face a common borrowing constraint.
The savings problem faced by a typical household is

max𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

subject to

𝑎𝑡+1 + 𝑐𝑡 ≤ 𝑤𝑧𝑡 + (1 + 𝑟)𝑎𝑡 𝑐𝑡 ≥ 0, and 𝑎𝑡 ≥ −𝐵

where
• 𝑐𝑡 is current consumption
• 𝑎𝑡 is assets
• 𝑧𝑡 is an exogenous component of labor income capturing stochastic unemployment risk, etc.
• 𝑤 is a wage rate
• 𝑟 is a net interest rate
• 𝐵 is the maximum amount that the agent is allowed to borrow

The exogenous process {𝑧𝑡} follows a finite state Markov chain with given stochastic matrix 𝑃 .
The wage and interest rate are fixed over time.
In this simple version of the model, households supply labor inelastically because they do not value leisure.

20 Chapter 2. The Aiyagari Model

https://nbviewer.org/github/QuantEcon/QuantEcon.notebooks/blob/master/aiyagari_continuous_time.ipynb

Equilibrium Models

2.3 Firms

Firms produce output by hiring capital and labor.
Firms act competitively and face constant returns to scale.
Since returns to scale are constant the number of firms does not matter.
Hence we can consider a single (but nonetheless competitive) representative firm.
The firm’s output is

𝑌𝑡 = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

where
• 𝐴 and 𝛼 are parameters with 𝐴 > 0 and 𝛼 ∈ (0, 1)
• 𝐾𝑡 is aggregate capital
• 𝑁 is total labor supply (which is constant in this simple version of the model)

The firm’s problem is

𝑚𝑎𝑥𝐾,𝑁 {𝐴𝐾𝛼
𝑡 𝑁1−𝛼 − (𝑟 + 𝛿)𝐾 − 𝑤𝑁}

The parameter 𝛿 is the depreciation rate.
From the first-order condition with respect to capital, the firm’s inverse demand for capital is

𝑟 = 𝐴𝛼 (𝑁
𝐾)

1−𝛼
− 𝛿 (2.1)

Using this expression and the firm’s first-order condition for labor, we can pin down the equilibriumwage rate as a function
of 𝑟 as

𝑤(𝑟) = 𝐴(1 − 𝛼)(𝐴𝛼/(𝑟 + 𝛿))𝛼/(1−𝛼) (2.2)

2.3.1 Equilibrium

We construct a stationary rational expectations equilibrium (SREE).
In such an equilibrium

• prices induce behavior that generates aggregate quantities consistent with the prices
• aggregate quantities and prices are constant over time

In more detail, an SREE lists a set of prices, savings and production policies such that
• households want to choose the specified savings policies taking the prices as given
• firms maximize profits taking the same prices as given
• the resulting aggregate quantities are consistent with the prices; in particular, the demand for capital equals the
supply

• aggregate quantities (defined as cross-sectional averages) are constant
In practice, once parameter values are set, we can check for an SREE by the following steps

1. pick a proposed quantity 𝐾 for aggregate capital

2.3. Firms 21

Equilibrium Models

2. determine corresponding prices, with interest rate 𝑟 determined by (2.1) and a wage rate 𝑤(𝑟) as given in (2.2)
3. determine the common optimal savings policy of the households given these prices
4. compute aggregate capital as the mean of steady state capital given this savings policy

If this final quantity agrees with 𝐾 then we have a SREE.

2.4 Code

Let’s look at how we might compute such an equilibrium in practice.
To solve the household’s dynamic programming problem we’ll use the DiscreteDP class from QuantEcon.py.
Our first task is the least exciting one: write code that maps parameters for a household problem into the R and Qmatrices
needed to generate an instance of DiscreteDP.
Below is a piece of boilerplate code that does just this.
In reading the code, the following information will be helpful

• R needs to be a matrix where R[s, a] is the reward at state s under action a.
• Q needs to be a three-dimensional array where Q[s, a, s'] is the probability of transitioning to state s' when
the current state is s and the current action is a.

(A more detailed discussion of DiscreteDP is available in the Discrete State Dynamic Programming lecture in the
Advanced Quantitative Economics with Python lecture series.)
Here we take the state to be 𝑠𝑡 ∶= (𝑎𝑡, 𝑧𝑡), where 𝑎𝑡 is assets and 𝑧𝑡 is the shock.
The action is the choice of next period asset level 𝑎𝑡+1.
We use Numba to speed up the loops so we can update the matrices efficiently when the parameters change.
The class also includes a default set of parameters that we’ll adopt unless otherwise specified.

class Household:
"""
This class takes the parameters that define a household asset accumulation
problem and computes the corresponding reward and transition matrices R
and Q required to generate an instance of DiscreteDP, and thereby solve
for the optimal policy.

Comments on indexing: We need to enumerate the state space S as a sequence
S = {0, ..., n}. To this end, (a_i, z_i) index pairs are mapped to s_i
indices according to the rule

s_i = a_i * z_size + z_i

To invert this map, use

a_i = s_i // z_size (integer division)
z_i = s_i % z_size

"""

def __init__(self,
r=0.01, # Interest rate

(continues on next page)

22 Chapter 2. The Aiyagari Model

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/markov/ddp.py
https://quantecon.org/quantecon-py/
https://python-advanced.quantecon.org/discrete_dp.html
https://python-advanced.quantecon.org

Equilibrium Models

(continued from previous page)

w=1.0, # Wages
β=0.96, # Discount factor
a_min=1e-10,
Π=[[0.9, 0.1], [0.1, 0.9]], # Markov chain
z_vals=[0.1, 1.0], # Exogenous states
a_max=18,
a_size=200):

Store values, set up grids over a and z
self.r, self.w, self.β = r, w, β
self.a_min, self.a_max, self.a_size = a_min, a_max, a_size

self.Π = np.asarray(Π)
self.z_vals = np.asarray(z_vals)
self.z_size = len(z_vals)

self.a_vals = np.linspace(a_min, a_max, a_size)
self.n = a_size * self.z_size

Build the array Q
self.Q = np.zeros((self.n, a_size, self.n))
self.build_Q()

Build the array R
self.R = np.empty((self.n, a_size))
self.build_R()

def set_prices(self, r, w):
"""
Use this method to reset prices. Calling the method will trigger a
re-build of R.
"""
self.r, self.w = r, w
self.build_R()

def build_Q(self):
populate_Q(self.Q, self.a_size, self.z_size, self.Π)

def build_R(self):
self.R.fill(-np.inf)
populate_R(self.R,

self.a_size,
self.z_size,
self.a_vals,
self.z_vals,
self.r,
self.w)

Do the hard work using JIT-ed functions

@jit(nopython=True)
def populate_R(R, a_size, z_size, a_vals, z_vals, r, w):

n = a_size * z_size
for s_i in range(n):

a_i = s_i // z_size

(continues on next page)

2.4. Code 23

Equilibrium Models

(continued from previous page)

z_i = s_i % z_size
a = a_vals[a_i]
z = z_vals[z_i]
for new_a_i in range(a_size):

a_new = a_vals[new_a_i]
c = w * z + (1 + r) * a - a_new
if c > 0:

R[s_i, new_a_i] = np.log(c) # Utility

@jit(nopython=True)
def populate_Q(Q, a_size, z_size, Π):

n = a_size * z_size
for s_i in range(n):

z_i = s_i % z_size
for a_i in range(a_size):

for next_z_i in range(z_size):
Q[s_i, a_i, a_i*z_size + next_z_i] = Π[z_i, next_z_i]

@jit(nopython=True)
def asset_marginal(s_probs, a_size, z_size):

a_probs = np.zeros(a_size)
for a_i in range(a_size):

for z_i in range(z_size):
a_probs[a_i] += s_probs[a_i*z_size + z_i]

return a_probs

As a first example of what we can do, let’s compute and plot an optimal accumulation policy at fixed prices.

Example prices
r = 0.03
w = 0.956

Create an instance of Household
am = Household(a_max=20, r=r, w=w)

Use the instance to build a discrete dynamic program
am_ddp = DiscreteDP(am.R, am.Q, am.β)

Solve using policy function iteration
results = am_ddp.solve(method='policy_iteration')

Simplify names
z_size, a_size = am.z_size, am.a_size
z_vals, a_vals = am.z_vals, am.a_vals
n = a_size * z_size

Get all optimal actions across the set of a indices with z fixed in each row
a_star = np.empty((z_size, a_size))
for s_i in range(n):

a_i = s_i // z_size
z_i = s_i % z_size
a_star[z_i, a_i] = a_vals[results.sigma[s_i]]

fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(a_vals, a_vals, 'k--') # 45 degrees

(continues on next page)

24 Chapter 2. The Aiyagari Model

Equilibrium Models

(continued from previous page)

for i in range(z_size):
lb = f'$z = {z_vals[i]:.2}$'
ax.plot(a_vals, a_star[i, :], lw=2, alpha=0.6, label=lb)
ax.set_xlabel('current assets')
ax.set_ylabel('next period assets')

ax.legend(loc='upper left')

plt.show()

The plot shows asset accumulation policies at different values of the exogenous state.
Now we want to calculate the equilibrium.
Let’s do this visually as a first pass.
The following code draws aggregate supply and demand curves.
The intersection gives equilibrium interest rates and capital.

2.4. Code 25

Equilibrium Models

A = 1.0
N = 1.0
α = 0.33
β = 0.96
δ = 0.05

def r_to_w(r):
"""
Equilibrium wages associated with a given interest rate r.
"""
return A * (1 - α) * (A * α / (r + δ))**(α / (1 - α))

def rd(K):
"""
Inverse demand curve for capital. The interest rate associated with a
given demand for capital K.
"""
return A * α * (N / K)**(1 - α) - δ

def prices_to_capital_stock(am, r):
"""
Map prices to the induced level of capital stock.

Parameters:

am : Household
An instance of an aiyagari_household.Household

r : float
The interest rate

"""
w = r_to_w(r)
am.set_prices(r, w)
aiyagari_ddp = DiscreteDP(am.R, am.Q, β)
Compute the optimal policy
results = aiyagari_ddp.solve(method='policy_iteration')
Compute the stationary distribution
stationary_probs = results.mc.stationary_distributions[0]
Extract the marginal distribution for assets
asset_probs = asset_marginal(stationary_probs, am.a_size, am.z_size)
Return K
return np.sum(asset_probs * am.a_vals)

Create an instance of Household
am = Household(a_max=20)

Use the instance to build a discrete dynamic program
am_ddp = DiscreteDP(am.R, am.Q, am.β)

Create a grid of r values at which to compute demand and supply of capital
num_points = 20
r_vals = np.linspace(0.005, 0.04, num_points)

Compute supply of capital

(continues on next page)

26 Chapter 2. The Aiyagari Model

Equilibrium Models

(continued from previous page)

k_vals = np.empty(num_points)
for i, r in enumerate(r_vals):

k_vals[i] = prices_to_capital_stock(am, r)

Plot against demand for capital by firms
fig, ax = plt.subplots(figsize=(11, 8))
ax.plot(k_vals, r_vals, lw=2, alpha=0.6, label='supply of capital')
ax.plot(k_vals, rd(k_vals), lw=2, alpha=0.6, label='demand for capital')
ax.grid()
ax.set_xlabel('capital')
ax.set_ylabel('interest rate')
ax.legend(loc='upper right')

plt.show()

2.4. Code 27

Equilibrium Models

28 Chapter 2. The Aiyagari Model

CHAPTER

THREE

DEFAULT RISK AND INCOME FLUCTUATIONS

Contents

• Default Risk and Income Fluctuations

– Overview

– Structure

– Equilibrium

– Computation

– Results

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

3.1 Overview

This lecture computes versions of Arellano’s [Arellano, 2008] model of sovereign default.
The model describes interactions among default risk, output, and an equilibrium interest rate that includes a premium for
endogenous default risk.
The decision maker is a government of a small open economy that borrows from risk-neutral foreign creditors.
The foreign lenders must be compensated for default risk.
The government borrows and lends abroad in order to smooth the consumption of its citizens.
The government repays its debt only if it wants to, but declining to pay has adverse consequences.
The interest rate on government debt adjusts in response to the state-dependent default probability chosen by government.
The model yields outcomes that help interpret sovereign default experiences, including

• countercyclical interest rates on sovereign debt
• countercyclical trade balances
• high volatility of consumption relative to output

29

Equilibrium Models

Notably, long recessions caused by bad draws in the income process increase the government’s incentive to default.
This can lead to

• spikes in interest rates
• temporary losses of access to international credit markets
• large drops in output, consumption, and welfare
• large capital outflows during recessions

Such dynamics are consistent with experiences of many countries.
Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe

from numba import njit, prange
%matplotlib inline

3.2 Structure

In this section we describe the main features of the model.

3.2.1 Output, Consumption and Debt

A small open economy is endowed with an exogenous stochastically fluctuating potential output stream {𝑦𝑡}.
Potential output is realized only in periods in which the government honors its sovereign debt.
The output good can be traded or consumed.
The sequence {𝑦𝑡} is described by a Markov process with stochastic density kernel 𝑝(𝑦, 𝑦′).
Households within the country are identical and rank stochastic consumption streams according to

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (3.1)

Here
• 0 < 𝛽 < 1 is a time discount factor
• 𝑢 is an increasing and strictly concave utility function

Consumption sequences enjoyed by households are affected by the government’s decision to borrow or lend internationally.
The government is benevolent in the sense that its aim is to maximize (3.1).
The government is the only domestic actor with access to foreign credit.
Because household are averse to consumption fluctuations, the government will try to smooth consumption by borrowing
from (and lending to) foreign creditors.

30 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

3.2.2 Asset Markets

The only credit instrument available to the government is a one-period bond traded in international credit markets.
The bond market has the following features

• The bond matures in one period and is not state contingent.
• A purchase of a bond with face value 𝐵′ is a claim to 𝐵′ units of the consumption good next period.
• To purchase 𝐵′ next period costs 𝑞𝐵′ now, or, what is equivalent.
• For selling −𝐵′ units of next period goods the seller earns −𝑞𝐵′ of today’s goods.

– If 𝐵′ < 0, then −𝑞𝐵′ units of the good are received in the current period, for a promise to repay −𝐵′ units
next period.

– There is an equilibrium price function 𝑞(𝐵′, 𝑦) that makes 𝑞 depend on both 𝐵′ and 𝑦.
Earnings on the government portfolio are distributed (or, if negative, taxed) lump sum to households.
When the government is not excluded from financial markets, the one-period national budget constraint is

𝑐 = 𝑦 + 𝐵 − 𝑞(𝐵′, 𝑦)𝐵′ (3.2)

Here and below, a prime denotes a next period value or a claim maturing next period.
To rule out Ponzi schemes, we also require that 𝐵 ≥ −𝑍 in every period.

• 𝑍 is chosen to be sufficiently large that the constraint never binds in equilibrium.

3.2.3 Financial Markets

Foreign creditors
• are risk neutral
• know the domestic output stochastic process {𝑦𝑡} and observe 𝑦𝑡, 𝑦𝑡−1, … , at time 𝑡
• can borrow or lend without limit in an international credit market at a constant international interest rate 𝑟
• receive full payment if the government chooses to pay
• receive zero if the government defaults on its one-period debt due

When a government is expected to default next period with probability 𝛿, the expected value of a promise to pay one unit
of consumption next period is 1 − 𝛿.
Therefore, the discounted expected value of a promise to pay 𝐵 next period is

𝑞 = 1 − 𝛿
1 + 𝑟 (3.3)

Next we turn to how the government in effect chooses the default probability 𝛿.

3.2. Structure 31

Equilibrium Models

3.2.4 Government’s Decisions

At each point in time 𝑡, the government chooses between
1. defaulting
2. meeting its current obligations and purchasing or selling an optimal quantity of one-period sovereign debt

Defaulting means declining to repay all of its current obligations.
If the government defaults in the current period, then consumption equals current output.
But a sovereign default has two consequences:

1. Output immediately falls from 𝑦 to ℎ(𝑦), where 0 ≤ ℎ(𝑦) ≤ 𝑦.
• It returns to 𝑦 only after the country regains access to international credit markets.

2. The country loses access to foreign credit markets.

3.2.5 Reentering International Credit Market

While in a state of default, the economy regains access to foreign credit in each subsequent period with probability 𝜃.

3.3 Equilibrium

Informally, an equilibrium is a sequence of interest rates on its sovereign debt, a stochastic sequence of government default
decisions and an implied flow of household consumption such that

1. Consumption and assets satisfy the national budget constraint.
2. The government maximizes household utility taking into account

• the resource constraint
• the effect of its choices on the price of bonds
• consequences of defaulting now for future net output and future borrowing and lending opportunities

3. The interest rate on the government’s debt includes a risk-premium sufficient to make foreign creditors expect on
average to earn the constant risk-free international interest rate.

To express these ideas more precisely, consider first the choices of the government, which
1. enters a period with initial assets 𝐵, or what is the same thing, initial debt to be repaid now of −𝐵
2. observes current output 𝑦, and
3. chooses either

1. to default, or
2. to pay −𝐵 and set next period’s debt due to −𝐵′

In a recursive formulation,
• state variables for the government comprise the pair (𝐵, 𝑦)
• 𝑣(𝐵, 𝑦) is the optimum value of the government’s problem when at the beginning of a period it faces the choice of
whether to honor or default

• 𝑣𝑐(𝐵, 𝑦) is the value of choosing to pay obligations falling due
• 𝑣𝑑(𝑦) is the value of choosing to default

32 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

𝑣𝑑(𝑦) does not depend on 𝐵 because, when access to credit is eventually regained, net foreign assets equal 0.
Expressed recursively, the value of defaulting is

𝑣𝑑(𝑦) = 𝑢(ℎ(𝑦)) + 𝛽 ∫ {𝜃𝑣(0, 𝑦′) + (1 − 𝜃)𝑣𝑑(𝑦′)} 𝑝(𝑦, 𝑦′)𝑑𝑦′

The value of paying is

𝑣𝑐(𝐵, 𝑦) = max
𝐵′≥−𝑍

{𝑢(𝑦 − 𝑞(𝐵′, 𝑦)𝐵′ + 𝐵) + 𝛽 ∫ 𝑣(𝐵′, 𝑦′)𝑝(𝑦, 𝑦′)𝑑𝑦′}

The three value functions are linked by

𝑣(𝐵, 𝑦) = max{𝑣𝑐(𝐵, 𝑦), 𝑣𝑑(𝑦)}

The government chooses to default when

𝑣𝑐(𝐵, 𝑦) < 𝑣𝑑(𝑦)

and hence given 𝐵′ the probability of default next period is

𝛿(𝐵′, 𝑦) ∶= ∫ 𝟙{𝑣𝑐(𝐵′, 𝑦′) < 𝑣𝑑(𝑦′)}𝑝(𝑦, 𝑦′)𝑑𝑦′ (3.4)

Given zero profits for foreign creditors in equilibrium, we can combine (3.3) and (3.4) to pin down the bond price function:

𝑞(𝐵′, 𝑦) = 1 − 𝛿(𝐵′, 𝑦)
1 + 𝑟 (3.5)

3.3.1 Definition of Equilibrium

An equilibrium is
• a pricing function 𝑞(𝐵′, 𝑦),
• a triple of value functions (𝑣𝑐(𝐵, 𝑦), 𝑣𝑑(𝑦), 𝑣(𝐵, 𝑦)),
• a decision rule telling the government when to default and when to pay as a function of the state (𝐵, 𝑦), and
• an asset accumulation rule that, conditional on choosing not to default, maps (𝐵, 𝑦) into 𝐵′

such that
• The three Bellman equations for (𝑣𝑐(𝐵, 𝑦), 𝑣𝑑(𝑦), 𝑣(𝐵, 𝑦)) are satisfied
• Given the price function 𝑞(𝐵′, 𝑦), the default decision rule and the asset accumulation decision rule attain the
optimal value function 𝑣(𝐵, 𝑦), and

• The price function 𝑞(𝐵′, 𝑦) satisfies equation (3.5)

3.4 Computation

Let’s now compute an equilibrium of Arellano’s model.
The equilibrium objects are the value function 𝑣(𝐵, 𝑦), the associated default decision rule, and the pricing function
𝑞(𝐵′, 𝑦).
We’ll use our code to replicate Arellano’s results.
After that we’ll perform some additional simulations.
We use a slightly modified version of the algorithm recommended by Arellano.

3.4. Computation 33

Equilibrium Models

• The appendix to [Arellano, 2008] recommends value function iteration until convergence, updating the price, and
then repeating.

• Instead, we update the bond price at every value function iteration step.
The second approach is faster and the two different procedures deliver very similar results.
Here is a more detailed description of our algorithm:

1. Guess a pair of non-default and default value functions 𝑣𝑐 and 𝑣𝑑.
2. Using these functions, calculate the value function 𝑣, the corresponding default probabilities and the price function

𝑞.
3. At each pair (𝐵, 𝑦),

1. update the value of defaulting 𝑣𝑑(𝑦).
2. update the value of remaining 𝑣𝑐(𝐵, 𝑦).

4. Check for convergence. If converged, stop – if not, go to step 2.
We use simple discretization on a grid of asset holdings and income levels.
The output process is discretized using a quadrature method due to Tauchen.
As we have in other places, we accelerate our code using Numba.
We define a class that will store parameters, grids and transition probabilities.

class Arellano_Economy:
" Stores data and creates primitives for the Arellano economy. "

def __init__(self,
B_grid_size= 251, # Grid size for bonds
B_grid_min=-0.45, # Smallest B value
B_grid_max=0.45, # Largest B value
y_grid_size=51, # Grid size for income
β=0.953, # Time discount parameter
γ=2.0, # Utility parameter
r=0.017, # Lending rate
ρ=0.945, # Persistence in the income process
η=0.025, # Standard deviation of the income process
θ=0.282, # Prob of re-entering financial markets
def_y_param=0.969): # Parameter governing income in default

Save parameters
self.β, self.γ, self.r, = β, γ, r
self.ρ, self.η, self.θ = ρ, η, θ

self.y_grid_size = y_grid_size
self.B_grid_size = B_grid_size
self.B_grid = np.linspace(B_grid_min, B_grid_max, B_grid_size)
mc = qe.markov.tauchen(y_grid_size, ρ, η, 0, 3)
self.y_grid, self.P = np.exp(mc.state_values), mc.P

The index at which B_grid is (close to) zero
self.B0_idx = np.searchsorted(self.B_grid, 1e-10)

Output recieved while in default, with same shape as y_grid
self.def_y = np.minimum(def_y_param * np.mean(self.y_grid), self.y_grid)

(continues on next page)

34 Chapter 3. Default Risk and Income Fluctuations

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/markov/approximation.py

Equilibrium Models

(continued from previous page)

def params(self):
return self.β, self.γ, self.r, self.ρ, self.η, self.θ

def arrays(self):
return self.P, self.y_grid, self.B_grid, self.def_y, self.B0_idx

Notice how the class returns the data it stores as simple numerical values and arrays via the methods params and
arrays.
We will use this data in the Numba-jitted functions defined below.
Jitted functions prefer simple arguments, since type inference is easier.
Here is the utility function.

@njit
def u(c, γ):

return c**(1-γ)/(1-γ)

Here is a function to compute the bond price at each state, given 𝑣𝑐 and 𝑣𝑑.

@njit
def compute_q(v_c, v_d, q, params, arrays):

"""
Compute the bond price function q(b, y) at each (b, y) pair.

This function writes to the array q that is passed in as an argument.
"""

Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays

for B_idx in range(len(B_grid)):
for y_idx in range(len(y_grid)):

Compute default probability and corresponding bond price
delta = P[y_idx, v_c[B_idx, :] < v_d].sum()
q[B_idx, y_idx] = (1 - delta) / (1 + r)

Next we introduce Bellman operators that updated 𝑣𝑑 and 𝑣𝑐.

@njit
def T_d(y_idx, v_c, v_d, params, arrays):

"""
The RHS of the Bellman equation when income is at index y_idx and
the country has chosen to default. Returns an update of v_d.
"""
Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays

current_utility = u(def_y[y_idx], γ)
v = np.maximum(v_c[B0_idx, :], v_d)
cont_value = np.sum((θ * v + (1 - θ) * v_d) * P[y_idx, :])

return current_utility + β * cont_value

(continues on next page)

3.4. Computation 35

Equilibrium Models

(continued from previous page)

@njit
def T_c(B_idx, y_idx, v_c, v_d, q, params, arrays):

"""
The RHS of the Bellman equation when the country is not in a
defaulted state on their debt. Returns a value that corresponds to
v_c[B_idx, y_idx], as well as the optimal level of bond sales B'.
"""
Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays
B = B_grid[B_idx]
y = y_grid[y_idx]

Compute the RHS of Bellman equation
current_max = -1e10
Step through choices of next period B'
for Bp_idx, Bp in enumerate(B_grid):

c = y + B - q[Bp_idx, y_idx] * Bp
if c > 0:

v = np.maximum(v_c[Bp_idx, :], v_d)
val = u(c, γ) + β * np.sum(v * P[y_idx, :])
if val > current_max:

current_max = val
Bp_star_idx = Bp_idx

return current_max, Bp_star_idx

Here is a fast function that calls these operators in the right sequence.

@njit(parallel=True)
def update_values_and_prices(v_c, v_d, # Current guess of value functions

B_star, q, # Arrays to be written to
params, arrays):

Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays
y_grid_size = len(y_grid)
B_grid_size = len(B_grid)

Compute bond prices and write them to q
compute_q(v_c, v_d, q, params, arrays)

Allocate memory
new_v_c = np.empty_like(v_c)
new_v_d = np.empty_like(v_d)

Calculate and return new guesses for v_c and v_d
for y_idx in prange(y_grid_size):

new_v_d[y_idx] = T_d(y_idx, v_c, v_d, params, arrays)
for B_idx in range(B_grid_size):

new_v_c[B_idx, y_idx], Bp_idx = T_c(B_idx, y_idx,
v_c, v_d, q, params, arrays)

B_star[B_idx, y_idx] = Bp_idx

(continues on next page)

36 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

(continued from previous page)

return new_v_c, new_v_d

We can now write a function that will use the Arellano_Economy class and the functions defined above to compute
the solution to our model.
We do not need to JIT compile this function since it only consists of outer loops (and JIT compiling makes almost zero
difference).
In fact, one of the jobs of this function is to take an instance of Arellano_Economy, which is hard for the JIT compiler
to handle, and strip it down to more basic objects, which are then passed out to jitted functions.

def solve(model, tol=1e-8, max_iter=10_000):
"""
Given an instance of Arellano_Economy, this function computes the optimal
policy and value functions.
"""
Unpack
params = model.params()
arrays = model.arrays()
y_grid_size, B_grid_size = model.y_grid_size, model.B_grid_size

Initial conditions for v_c and v_d
v_c = np.zeros((B_grid_size, y_grid_size))
v_d = np.zeros(y_grid_size)

Allocate memory
q = np.empty_like(v_c)
B_star = np.empty_like(v_c, dtype=int)

current_iter = 0
dist = np.inf
while (current_iter < max_iter) and (dist > tol):

if current_iter % 100 == 0:
print(f"Entering iteration {current_iter}.")

new_v_c, new_v_d = update_values_and_prices(v_c, v_d, B_star, q, params,␣
↪arrays)

Check tolerance and update
dist = np.max(np.abs(new_v_c - v_c)) + np.max(np.abs(new_v_d - v_d))
v_c = new_v_c
v_d = new_v_d
current_iter += 1

print(f"Terminating at iteration {current_iter}.")
return v_c, v_d, q, B_star

Finally, we write a function that will allow us to simulate the economy once we have the policy functions

def simulate(model, T, v_c, v_d, q, B_star, y_idx=None, B_idx=None):
"""
Simulates the Arellano 2008 model of sovereign debt

Here `model` is an instance of `Arellano_Economy` and `T` is the length of
the simulation. Endogenous objects `v_c`, `v_d`, `q` and `B_star` are
assumed to come from a solution to `model`.

(continues on next page)

3.4. Computation 37

Equilibrium Models

(continued from previous page)

"""
Unpack elements of the model
B0_idx = model.B0_idx
y_grid = model.y_grid
B_grid, y_grid, P = model.B_grid, model.y_grid, model.P

Set initial conditions to middle of grids
if y_idx == None:

y_idx = np.searchsorted(y_grid, y_grid.mean())
if B_idx == None:

B_idx = B0_idx
in_default = False

Create Markov chain and simulate income process
mc = qe.MarkovChain(P, y_grid)
y_sim_indices = mc.simulate_indices(T+1, init=y_idx)

Allocate memory for outputs
y_sim = np.empty(T)
y_a_sim = np.empty(T)
B_sim = np.empty(T)
q_sim = np.empty(T)
d_sim = np.empty(T, dtype=int)

Perform simulation
t = 0
while t < T:

Store the value of y_t and B_t
y_sim[t] = y_grid[y_idx]
B_sim[t] = B_grid[B_idx]

if in default:
if v_c[B_idx, y_idx] < v_d[y_idx] or in_default:

y_a_sim[t] = model.def_y[y_idx]
d_sim[t] = 1
Bp_idx = B0_idx
Re-enter financial markets next period with prob θ
in_default = False if np.random.rand() < model.θ else True

else:
y_a_sim[t] = y_sim[t]
d_sim[t] = 0
Bp_idx = B_star[B_idx, y_idx]

q_sim[t] = q[Bp_idx, y_idx]

Update time and indices
t += 1
y_idx = y_sim_indices[t]
B_idx = Bp_idx

return y_sim, y_a_sim, B_sim, q_sim, d_sim

38 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

3.5 Results

Let’s start by trying to replicate the results obtained in [Arellano, 2008].
In what follows, all results are computed using Arellano’s parameter values.
The values can be seen in the __init__ method of the Arellano_Economy shown above.
For example, r=0.017 matches the average quarterly rate on a 5 year US treasury over the period 1983–2001.
Details on how to compute the figures are reported as solutions to the exercises.
The first figure shows the bond price schedule and replicates Figure 3 of Arellano, where 𝑦𝐿 and 𝑌𝐻 are particular below
average and above average values of output 𝑦.

• 𝑦𝐿 is 5% below the mean of the 𝑦 grid values
• 𝑦𝐻 is 5% above the mean of the 𝑦 grid values

The grid used to compute this figure was relatively fine (y_grid_size, B_grid_size = 51, 251), which
explains the minor differences between this and Arrelano’s figure.
The figure shows that

• Higher levels of debt (larger −𝐵′) induce larger discounts on the face value, which correspond to higher interest
rates.

• Lower income also causes more discounting, as foreign creditors anticipate greater likelihood of default.
The next figure plots value functions and replicates the right hand panel of Figure 4 of [Arellano, 2008].

3.5. Results 39

Equilibrium Models

We can use the results of the computation to study the default probability 𝛿(𝐵′, 𝑦) defined in (3.4).
The next plot shows these default probabilities over (𝐵′, 𝑦) as a heat map.
As anticipated, the probability that the government chooses to default in the following period increases with indebtedness
and falls with income.
Next let’s run a time series simulation of {𝑦𝑡}, {𝐵𝑡} and 𝑞(𝐵𝑡+1, 𝑦𝑡).
The grey vertical bars correspond to periods when the economy is excluded from financial markets because of a past
default.
One notable feature of the simulated data is the nonlinear response of interest rates.
Periods of relative stability are followed by sharp spikes in the discount rate on government debt.

3.6 Exercises

Exercise 3.6.1
To the extent that you can, replicate the figures shown above

• Use the parameter values listed as defaults in Arellano_Economy.
• The time series will of course vary depending on the shock draws.

Solution to Exercise 3.6.1

40 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

Compute the value function, policy and equilibrium prices

ae = Arellano_Economy()

v_c, v_d, q, B_star = solve(ae)

Entering iteration 0.

Entering iteration 100.

Entering iteration 200.

Entering iteration 300.

Terminating at iteration 399.

Compute the bond price schedule as seen in figure 3 of Arellano (2008)

Unpack some useful names
B_grid, y_grid, P = ae.B_grid, ae.y_grid, ae.P
B_grid_size, y_grid_size = len(B_grid), len(y_grid)
r = ae.r

Create "Y High" and "Y Low" values as 5% devs from mean

(continues on next page)

3.6. Exercises 41

Equilibrium Models

42 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

(continued from previous page)

high, low = np.mean(y_grid) * 1.05, np.mean(y_grid) * .95
iy_high, iy_low = (np.searchsorted(y_grid, x) for x in (high, low))

fig, ax = plt.subplots(figsize=(10, 6.5))
ax.set_title("Bond price schedule $q(y, B')$")

Extract a suitable plot grid
x = []
q_low = []
q_high = []
for i, B in enumerate(B_grid):

if -0.35 <= B <= 0: # To match fig 3 of Arellano
x.append(B)
q_low.append(q[i, iy_low])
q_high.append(q[i, iy_high])

ax.plot(x, q_high, label="y_H", lw=2, alpha=0.7)
ax.plot(x, q_low, label="y_L", lw=2, alpha=0.7)
ax.set_xlabel("B'")
ax.legend(loc='upper left', frameon=False)
plt.show()

Draw a plot of the value functions

v = np.maximum(v_c, np.reshape(v_d, (1, y_grid_size)))

fig, ax = plt.subplots(figsize=(10, 6.5))

(continues on next page)

3.6. Exercises 43

Equilibrium Models

(continued from previous page)

ax.set_title("Value Functions")
ax.plot(B_grid, v[:, iy_high], label="y_H", lw=2, alpha=0.7)
ax.plot(B_grid, v[:, iy_low], label="y_L", lw=2, alpha=0.7)
ax.legend(loc='upper left')
ax.set(xlabel="B", ylabel="$v(y, B)$")
ax.set_xlim(min(B_grid), max(B_grid))
plt.show()

Draw a heat map for default probability

xx, yy = B_grid, y_grid
zz = np.empty_like(v_c)

for B_idx in range(B_grid_size):
for y_idx in range(y_grid_size):

zz[B_idx, y_idx] = P[y_idx, v_c[B_idx, :] < v_d].sum()

Create figure
fig, ax = plt.subplots(figsize=(10, 6.5))
hm = ax.pcolormesh(xx, yy, zz.T)
cax = fig.add_axes([.92, .1, .02, .8])
fig.colorbar(hm, cax=cax)
ax.axis([xx.min(), 0.05, yy.min(), yy.max()])
ax.set(xlabel="B'", ylabel="y", title="Probability of Default")
plt.show()

44 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

Plot a time series of major variables simulated from the model

T = 250
np.random.seed(42)
y_sim, y_a_sim, B_sim, q_sim, d_sim = simulate(ae, T, v_c, v_d, q, B_star)

Pick up default start and end dates
start_end_pairs = []
i = 0
while i < len(d_sim):

if d_sim[i] == 0:
i += 1

else:
If we get to here we're in default
start_default = i
while i < len(d_sim) and d_sim[i] == 1:

i += 1
end_default = i - 1
start_end_pairs.append((start_default, end_default))

plot_series = (y_sim, B_sim, q_sim)
titles = 'output', 'foreign assets', 'bond price'

fig, axes = plt.subplots(len(plot_series), 1, figsize=(10, 12))
fig.subplots_adjust(hspace=0.3)

for ax, series, title in zip(axes, plot_series, titles):
Determine suitable y limits
s_max, s_min = max(series), min(series)
s_range = s_max - s_min
y_max = s_max + s_range * 0.1

(continues on next page)

3.6. Exercises 45

Equilibrium Models

(continued from previous page)

y_min = s_min - s_range * 0.1
ax.set_ylim(y_min, y_max)
for pair in start_end_pairs:

ax.fill_between(pair, (y_min, y_min), (y_max, y_max),
color='k', alpha=0.3)

ax.grid()
ax.plot(range(T), series, lw=2, alpha=0.7)
ax.set(title=title, xlabel="time")

plt.show()

46 Chapter 3. Default Risk and Income Fluctuations

Equilibrium Models

3.6. Exercises 47

Equilibrium Models

48 Chapter 3. Default Risk and Income Fluctuations

CHAPTER

FOUR

GLOBALIZATION AND CYCLES

Contents

• Globalization and Cycles

– Overview

– Key Ideas

– Model

– Simulation

– Exercises

4.1 Overview

In this lecture, we review the paper Globalization and Synchronization of Innovation Cycles by Kiminori Matsuyama,
Laura Gardini and Iryna Sushko.
This model helps us understand several interesting stylized facts about the world economy.
One of these is synchronized business cycles across different countries.
Most existing models that generate synchronized business cycles do so by assumption, since they tie output in each country
to a common shock.
They also fail to explain certain features of the data, such as the fact that the degree of synchronization tends to increase
with trade ties.
By contrast, in the model we consider in this lecture, synchronization is both endogenous and increasing with the extent
of trade integration.
In particular, as trade costs fall and international competition increases, innovation incentives become aligned and coun-
tries synchronize their innovation cycles.
Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from numba import jit
from ipywidgets import interact

49

http://www.centreformacroeconomics.ac.uk/Discussion-Papers/2015/CFMDP2015-27-Paper.pdf
http://faculty.wcas.northwestern.edu/~kmatsu/
http://www.mdef.it/index.php?id=32
http://irynasushko.altervista.org/

Equilibrium Models

4.1.1 Background

The model builds on work by Judd [Judd, 1985], Deneckner and Judd [Deneckere and Judd, 1992] and Helpman and
Krugman [Helpman and Krugman, 1985] by developing a two-country model with trade and innovation.
On the technical side, the paper introduces the concept of coupled oscillators to economic modeling.
As we will see, coupled oscillators arise endogenously within the model.
Below we review the model and replicate some of the results on synchronization of innovation across countries.

4.2 Key Ideas

It is helpful to begin with an overview of the mechanism.

4.2.1 Innovation Cycles

As discussed above, two countries produce and trade with each other.
In each country, firms innovate, producing new varieties of goods and, in doing so, receiving temporary monopoly power.
Imitators follow and, after one period of monopoly, what had previously been new varieties now enter competitive pro-
duction.
Firms have incentives to innovate and produce new goods when the mass of varieties of goods currently in production is
relatively low.
In addition, there are strategic complementarities in the timing of innovation.
Firms have incentives to innovate in the same period, so as to avoid competing with substitutes that are competitively
produced.
This leads to temporal clustering in innovations in each country.
After a burst of innovation, the mass of goods currently in production increases.
However, goods also become obsolete, so that not all survive from period to period.
This mechanism generates a cycle, where the mass of varieties increases through simultaneous innovation and then falls
through obsolescence.

4.2.2 Synchronization

In the absence of trade, the timing of innovation cycles in each country is decoupled.
This will be the case when trade costs are prohibitively high.
If trade costs fall, then goods produced in each country penetrate each other’s markets.
As illustrated below, this leads to synchronization of business cycles across the two countries.

50 Chapter 4. Globalization and Cycles

https://en.wikipedia.org/wiki/Oscillation#Coupled_oscillations

Equilibrium Models

4.3 Model

Let’s write down the model more formally.
(The treatment is relatively terse since full details can be found in the original paper)
Time is discrete with 𝑡 = 0, 1, ….
There are two countries indexed by 𝑗 or 𝑘.
In each country, a representative household inelastically supplies 𝐿𝑗 units of labor at wage rate 𝑤𝑗,𝑡.
Without loss of generality, it is assumed that 𝐿1 ≥ 𝐿2.
Households consume a single nontradeable final good which is produced competitively.
Its production involves combining two types of tradeable intermediate inputs via

𝑌𝑘,𝑡 = 𝐶𝑘,𝑡 = (
𝑋𝑜

𝑘,𝑡
1 − 𝛼)

1−𝛼
(𝑋𝑘,𝑡

𝛼)
𝛼

Here 𝑋𝑜
𝑘,𝑡 is a homogeneous input which can be produced from labor using a linear, one-for-one technology.

It is freely tradeable, competitively supplied, and homogeneous across countries.
By choosing the price of this good as numeraire and assuming both countries find it optimal to always produce the
homogeneous good, we can set 𝑤1,𝑡 = 𝑤2,𝑡 = 1.
The good 𝑋𝑘,𝑡 is a composite, built from many differentiated goods via

𝑋1− 1
𝜎

𝑘,𝑡 = ∫
Ω𝑡

[𝑥𝑘,𝑡(𝜈)]1− 1
𝜎 𝑑𝜈

Here 𝑥𝑘,𝑡(𝜈) is the total amount of a differentiated good 𝜈 ∈ Ω𝑡 that is produced.
The parameter 𝜎 > 1 is the direct partial elasticity of substitution between a pair of varieties and Ω𝑡 is the set of varieties
available in period 𝑡.
We can split the varieties into those which are supplied competitively and those supplied monopolistically; that is, Ω𝑡 =
Ω𝑐

𝑡 + Ω𝑚
𝑡 .

4.3.1 Prices

Demand for differentiated inputs is

𝑥𝑘,𝑡(𝜈) = (𝑝𝑘,𝑡(𝜈)
𝑃𝑘,𝑡

)
−𝜎 𝛼𝐿𝑘

𝑃𝑘,𝑡

Here
• 𝑝𝑘,𝑡(𝜈) is the price of the variety 𝜈 and
• 𝑃𝑘,𝑡 is the price index for differentiated inputs in 𝑘, defined by

[𝑃𝑘,𝑡]
1−𝜎 = ∫

Ω𝑡

[𝑝𝑘,𝑡(𝜈)]1−𝜎𝑑𝜈

The price of a variety also depends on the origin, 𝑗, and destination, 𝑘, of the goods because shipping varieties between
countries incurs an iceberg trade cost 𝜏𝑗,𝑘.
Thus the effective price in country 𝑘 of a variety 𝜈 produced in country 𝑗 becomes 𝑝𝑘,𝑡(𝜈) = 𝜏𝑗,𝑘 𝑝𝑗,𝑡(𝜈).

4.3. Model 51

http://www.centreformacroeconomics.ac.uk/Discussion-Papers/2015/CFMDP2015-27-Paper.pdf

Equilibrium Models

Using these expressions, we can derive the total demand for each variety, which is

𝐷𝑗,𝑡(𝜈) = ∑
𝑘

𝜏𝑗,𝑘𝑥𝑘,𝑡(𝜈) = 𝛼𝐴𝑗,𝑡(𝑝𝑗,𝑡(𝜈))−𝜎

where

𝐴𝑗,𝑡 ∶= ∑
𝑘

𝜌𝑗,𝑘𝐿𝑘
(𝑃𝑘,𝑡)1−𝜎 and 𝜌𝑗,𝑘 = (𝜏𝑗,𝑘)1−𝜎 ≤ 1

It is assumed that 𝜏1,1 = 𝜏2,2 = 1 and 𝜏1,2 = 𝜏2,1 = 𝜏 for some 𝜏 > 1, so that

𝜌1,2 = 𝜌2,1 = 𝜌 ∶= 𝜏1−𝜎 < 1

The value 𝜌 ∈ [0, 1) is a proxy for the degree of globalization.
Producing one unit of each differentiated variety requires 𝜓 units of labor, so the marginal cost is equal to 𝜓 for 𝜈 ∈ Ω𝑗,𝑡.
Additionally, all competitive varieties will have the same price (because of equal marginal cost), which means that, for
all 𝜈 ∈ Ω𝑐,

𝑝𝑗,𝑡(𝜈) = 𝑝𝑐
𝑗,𝑡 ∶= 𝜓 and 𝐷𝑗,𝑡 = 𝑦𝑐

𝑗,𝑡 ∶= 𝛼𝐴𝑗,𝑡(𝑝𝑐
𝑗,𝑡)−𝜎

Monopolists will have the same marked-up price, so, for all 𝜈 ∈ Ω𝑚 ,

𝑝𝑗,𝑡(𝜈) = 𝑝𝑚
𝑗,𝑡 ∶= 𝜓

1 − 1
𝜎

and 𝐷𝑗,𝑡 = 𝑦𝑚
𝑗,𝑡 ∶= 𝛼𝐴𝑗,𝑡(𝑝𝑚

𝑗,𝑡)−𝜎

Define

𝜃 ∶= 𝑝𝑐
𝑗,𝑡

𝑝𝑚
𝑗,𝑡

𝑦𝑐
𝑗,𝑡

𝑦𝑚
𝑗,𝑡

= (1 − 1
𝜎)

1−𝜎

Using the preceding definitions and some algebra, the price indices can now be rewritten as

(𝑃𝑘,𝑡
𝜓)

1−𝜎
= 𝑀𝑘,𝑡 + 𝜌𝑀𝑗,𝑡 where 𝑀𝑗,𝑡 ∶= 𝑁𝑐

𝑗,𝑡 + 𝑁𝑚
𝑗,𝑡
𝜃

The symbols 𝑁𝑐
𝑗,𝑡 and 𝑁𝑚

𝑗,𝑡 will denote the measures of Ω𝑐 and Ω𝑚 respectively.

4.3.2 New Varieties

To introduce a new variety, a firm must hire 𝑓 units of labor per variety in each country.
Monopolist profits must be less than or equal to zero in expectation, so

𝑁𝑚
𝑗,𝑡 ≥ 0, 𝜋𝑚

𝑗,𝑡 ∶= (𝑝𝑚
𝑗,𝑡 − 𝜓)𝑦𝑚

𝑗,𝑡 − 𝑓 ≤ 0 and 𝜋𝑚
𝑗,𝑡𝑁𝑚

𝑗,𝑡 = 0

With further manipulations, this becomes

𝑁𝑚
𝑗,𝑡 = 𝜃(𝑀𝑗,𝑡 − 𝑁𝑐

𝑗,𝑡) ≥ 0, 1
𝜎 [𝛼𝐿𝑗

𝜃(𝑀𝑗,𝑡 + 𝜌𝑀𝑘,𝑡)
+ 𝛼𝐿𝑘

𝜃(𝑀𝑗,𝑡 + 𝑀𝑘,𝑡/𝜌)] ≤ 𝑓

52 Chapter 4. Globalization and Cycles

Equilibrium Models

4.3.3 Law of Motion

With 𝛿 as the exogenous probability of a variety becoming obsolete, the dynamic equation for the measure of firms
becomes

𝑁𝑐
𝑗,𝑡+1 = 𝛿(𝑁𝑐

𝑗,𝑡 + 𝑁𝑚
𝑗,𝑡) = 𝛿(𝑁𝑐

𝑗,𝑡 + 𝜃(𝑀𝑗,𝑡 − 𝑁𝑐
𝑗,𝑡))

We will work with a normalized measure of varieties

𝑛𝑗,𝑡 ∶= 𝜃𝜎𝑓𝑁𝑐
𝑗,𝑡

𝛼(𝐿1 + 𝐿2) , 𝑖𝑗,𝑡 ∶= 𝜃𝜎𝑓𝑁𝑚
𝑗,𝑡

𝛼(𝐿1 + 𝐿2) , 𝑚𝑗,𝑡 ∶= 𝜃𝜎𝑓𝑀𝑗,𝑡
𝛼(𝐿1 + 𝐿2) = 𝑛𝑗,𝑡 + 𝑖𝑗,𝑡

𝜃

We also use 𝑠𝑗 ∶= 𝐿𝑗
𝐿1+𝐿2

to be the share of labor employed in country 𝑗.
We can use these definitions and the preceding expressions to obtain a law of motion for 𝑛𝑡 ∶= (𝑛1,𝑡, 𝑛2,𝑡).
In particular, given an initial condition, 𝑛0 = (𝑛1,0, 𝑛2,0) ∈ ℝ2

+, the equilibrium trajectory, {𝑛𝑡}∞
𝑡=0 = {(𝑛1,𝑡, 𝑛2,𝑡)}∞

𝑡=0,
is obtained by iterating on 𝑛𝑡+1 = 𝐹(𝑛𝑡) where 𝐹 ∶ ℝ2

+ → ℝ2
+ is given by

𝐹(𝑛𝑡) =

⎧{{
⎨{{⎩

(𝛿(𝜃𝑠1(𝜌) + (1 − 𝜃)𝑛1,𝑡), 𝛿(𝜃𝑠2(𝜌) + (1 − 𝜃)𝑛2,𝑡)) for 𝑛𝑡 ∈ 𝐷𝐿𝐿
(𝛿𝑛1,𝑡, 𝛿𝑛2,𝑡) for 𝑛𝑡 ∈ 𝐷𝐻𝐻
(𝛿𝑛1,𝑡, 𝛿(𝜃ℎ2(𝑛1,𝑡) + (1 − 𝜃)𝑛2,𝑡)) for 𝑛𝑡 ∈ 𝐷𝐻𝐿
(𝛿(𝜃ℎ1(𝑛2,𝑡) + (1 − 𝜃)𝑛1,𝑡, 𝛿𝑛2,𝑡)) for 𝑛𝑡 ∈ 𝐷𝐿𝐻

Here

𝐷𝐿𝐿 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛𝑗 ≤ 𝑠𝑗(𝜌)}

𝐷𝐻𝐻 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛𝑗 ≥ ℎ𝑗(𝑛𝑘)}

𝐷𝐻𝐿 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛1 ≥ 𝑠1(𝜌) and 𝑛2 ≤ ℎ2(𝑛1)}

𝐷𝐿𝐻 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛1 ≤ ℎ1(𝑛2) and 𝑛2 ≥ 𝑠2(𝜌)}

while

𝑠1(𝜌) = 1 − 𝑠2(𝜌) = min{𝑠1 − 𝜌𝑠2
1 − 𝜌 , 1}

and ℎ𝑗(𝑛𝑘) is defined implicitly by the equation

1 = 𝑠𝑗
ℎ𝑗(𝑛𝑘) + 𝜌𝑛𝑘

+ 𝑠𝑘
ℎ𝑗(𝑛𝑘) + 𝑛𝑘/𝜌

Rewriting the equation above gives us a quadratic equation in terms of ℎ𝑗(𝑛𝑘).
Since we know ℎ𝑗(𝑛𝑘) > 0 then we can just solve the quadratic equation and return the positive root.
This gives us

ℎ𝑗(𝑛𝑘)2 + ((𝜌 + 1
𝜌)𝑛𝑘 − 𝑠𝑗 − 𝑠𝑘) ℎ𝑗(𝑛𝑘) + (𝑛2

𝑘 − 𝑠𝑗𝑛𝑘
𝜌 − 𝑠𝑘𝑛𝑘𝜌) = 0

4.4 Simulation

Let’s try simulating some of these trajectories.
We will focus in particular on whether or not innovation cycles synchronize across the two countries.
As we will see, this depends on initial conditions.

4.4. Simulation 53

Equilibrium Models

For some parameterizations, synchronization will occur for “most” initial conditions, while for others synchronization will
be rare.
The computational burden of testing synchronization across many initial conditions is not trivial.
In order to make our code fast, we will use just in time compiled functions that will get called and handled by our class.
These are the @jit statements that you see below (review this lecture if you don’t recall how to use JIT compilation).
Here’s the main body of code

@jit(nopython=True)
def _hj(j, nk, s1, s2, θ, δ, ρ):

"""
If we expand the implicit function for h_j(n_k) then we find that
it is quadratic. We know that h_j(n_k) > 0 so we can get its
value by using the quadratic form
"""
Find out who's h we are evaluating
if j == 1:

sj = s1
sk = s2

else:
sj = s2
sk = s1

Coefficients on the quadratic a x^2 + b x + c = 0
a = 1.0
b = ((ρ + 1 / ρ) * nk - sj - sk)
c = (nk * nk - (sj * nk) / ρ - sk * ρ * nk)

Positive solution of quadratic form
root = (-b + np.sqrt(b * b - 4 * a * c)) / (2 * a)

return root

@jit(nopython=True)
def DLL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DLL"
return (n1 <= s1_ρ) and (n2 <= s2_ρ)

@jit(nopython=True)
def DHH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DHH"
return (n1 >= _hj(1, n2, s1, s2, θ, δ, ρ)) and \

(n2 >= _hj(2, n1, s1, s2, θ, δ, ρ))

@jit(nopython=True)
def DHL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DHL"
return (n1 >= s1_ρ) and (n2 <= _hj(2, n1, s1, s2, θ, δ, ρ))

@jit(nopython=True)
def DLH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DLH"
return (n1 <= _hj(1, n2, s1, s2, θ, δ, ρ)) and (n2 >= s2_ρ)

@jit(nopython=True)
def one_step(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

(continues on next page)

54 Chapter 4. Globalization and Cycles

https://python-programming.quantecon.org/numba.html

Equilibrium Models

(continued from previous page)

"""
Takes a current value for (n_{1, t}, n_{2, t}) and returns the
values (n_{1, t+1}, n_{2, t+1}) according to the law of motion.
"""
Depending on where we are, evaluate the right branch
if DLL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

n1_tp1 = δ * (θ * s1_ρ + (1 - θ) * n1)
n2_tp1 = δ * (θ * s2_ρ + (1 - θ) * n2)

elif DHH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):
n1_tp1 = δ * n1
n2_tp1 = δ * n2

elif DHL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):
n1_tp1 = δ * n1
n2_tp1 = δ * (θ * _hj(2, n1, s1, s2, θ, δ, ρ) + (1 - θ) * n2)

elif DLH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):
n1_tp1 = δ * (θ * _hj(1, n2, s1, s2, θ, δ, ρ) + (1 - θ) * n1)
n2_tp1 = δ * n2

return n1_tp1, n2_tp1

@jit(nopython=True)
def n_generator(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"""
Given an initial condition, continues to yield new values of
n1 and n2
"""
n1_t, n2_t = n1_0, n2_0
while True:

n1_tp1, n2_tp1 = one_step(n1_t, n2_t, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ)
yield (n1_tp1, n2_tp1)
n1_t, n2_t = n1_tp1, n2_tp1

@jit(nopython=True)
def _pers_till_sync(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ, maxiter, npers):

"""
Takes initial values and iterates forward to see whether
the histories eventually end up in sync.

If countries are symmetric then as soon as the two countries have the
same measure of firms then they will be synchronized -- However, if
they are not symmetric then it is possible they have the same measure
of firms but are not yet synchronized. To address this, we check whether
firms stay synchronized for `npers` periods with Euclidean norm

Parameters

n1_0 : scalar(Float)

Initial normalized measure of firms in country one
n2_0 : scalar(Float)

Initial normalized measure of firms in country two
maxiter : scalar(Int)

Maximum number of periods to simulate
npers : scalar(Int)

Number of periods we would like the countries to have the
same measure for

(continues on next page)

4.4. Simulation 55

Equilibrium Models

(continued from previous page)

Returns

synchronized : scalar(Bool)

Did the two economies end up synchronized
pers_2_sync : scalar(Int)

The number of periods required until they synchronized
"""
Initialize the status of synchronization
synchronized = False
pers_2_sync = maxiter
iters = 0

Initialize generator
n_gen = n_generator(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ)

Will use a counter to determine how many times in a row
the firm measures are the same
nsync = 0

while (not synchronized) and (iters < maxiter):
Increment the number of iterations and get next values
iters += 1
n1_t, n2_t = next(n_gen)

Check whether same in this period
if abs(n1_t - n2_t) < 1e-8:

nsync += 1
If not, then reset the nsync counter
else:

nsync = 0

If we have been in sync for npers then stop and countries
became synchronized nsync periods ago
if nsync > npers:

synchronized = True
pers_2_sync = iters - nsync

return synchronized, pers_2_sync

@jit(nopython=True)
def _create_attraction_basis(s1_ρ, s2_ρ, s1, s2, θ, δ, ρ,

maxiter, npers, npts):
Create unit range with npts
synchronized, pers_2_sync = False, 0
unit_range = np.linspace(0.0, 1.0, npts)

Allocate space to store time to sync
time_2_sync = np.empty((npts, npts))
Iterate over initial conditions
for (i, n1_0) in enumerate(unit_range):

for (j, n2_0) in enumerate(unit_range):
synchronized, pers_2_sync = _pers_till_sync(n1_0, n2_0, s1_ρ,

s2_ρ, s1, s2, θ, δ,
ρ, maxiter, npers)

time_2_sync[i, j] = pers_2_sync

(continues on next page)

56 Chapter 4. Globalization and Cycles

Equilibrium Models

(continued from previous page)

return time_2_sync

== Now we define a class for the model ==

class MSGSync:
"""
The paper "Globalization and Synchronization of Innovation Cycles" presents
a two-country model with endogenous innovation cycles. Combines elements
from Deneckere Judd (1985) and Helpman Krugman (1985) to allow for a
model with trade that has firms who can introduce new varieties into
the economy.

We focus on being able to determine whether the two countries eventually
synchronize their innovation cycles. To do this, we only need a few
of the many parameters. In particular, we need the parameters listed
below

Parameters

s1 : scalar(Float)

Amount of total labor in country 1 relative to total worldwide labor
θ : scalar(Float)

A measure of how much more of the competitive variety is used in
production of final goods

δ : scalar(Float)
Percentage of firms that are not exogenously destroyed every period

ρ : scalar(Float)
Measure of how expensive it is to trade between countries

"""
def __init__(self, s1=0.5, θ=2.5, δ=0.7, ρ=0.2):

Store model parameters
self.s1, self.θ, self.δ, self.ρ = s1, θ, δ, ρ

Store other cutoffs and parameters we use
self.s2 = 1 - s1
self.s1_ρ = self._calc_s1_ρ()
self.s2_ρ = 1 - self.s1_ρ

def _unpack_params(self):
return self.s1, self.s2, self.θ, self.δ, self.ρ

def _calc_s1_ρ(self):
Unpack params
s1, s2, θ, δ, ρ = self._unpack_params()

s_1(ρ) = min(val, 1)
val = (s1 - ρ * s2) / (1 - ρ)
return min(val, 1)

def simulate_n(self, n1_0, n2_0, T):
"""
Simulates the values of (n1, n2) for T periods

Parameters

(continues on next page)

4.4. Simulation 57

Equilibrium Models

(continued from previous page)

n1_0 : scalar(Float)
Initial normalized measure of firms in country one

n2_0 : scalar(Float)
Initial normalized measure of firms in country two

T : scalar(Int)
Number of periods to simulate

Returns

n1 : Array(Float64, ndim=1)

A history of normalized measures of firms in country one
n2 : Array(Float64, ndim=1)

A history of normalized measures of firms in country two
"""
Unpack parameters
s1, s2, θ, δ, ρ = self._unpack_params()
s1_ρ, s2_ρ = self.s1_ρ, self.s2_ρ

Allocate space
n1 = np.empty(T)
n2 = np.empty(T)

Create the generator
n1[0], n2[0] = n1_0, n2_0
n_gen = n_generator(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ)

Simulate for T periods
for t in range(1, T):

Get next values
n1_tp1, n2_tp1 = next(n_gen)

Store in arrays
n1[t] = n1_tp1
n2[t] = n2_tp1

return n1, n2

def pers_till_sync(self, n1_0, n2_0, maxiter=500, npers=3):
"""
Takes initial values and iterates forward to see whether
the histories eventually end up in sync.

If countries are symmetric then as soon as the two countries have the
same measure of firms then they will be synchronized -- However, if
they are not symmetric then it is possible they have the same measure
of firms but are not yet synchronized. To address this, we check whether
firms stay synchronized for `npers` periods with Euclidean norm

Parameters

n1_0 : scalar(Float)

Initial normalized measure of firms in country one
n2_0 : scalar(Float)

Initial normalized measure of firms in country two
maxiter : scalar(Int)

Maximum number of periods to simulate

(continues on next page)

58 Chapter 4. Globalization and Cycles

Equilibrium Models

(continued from previous page)

npers : scalar(Int)
Number of periods we would like the countries to have the
same measure for

Returns

synchronized : scalar(Bool)

Did the two economies end up synchronized
pers_2_sync : scalar(Int)

The number of periods required until they synchronized
"""
Unpack parameters
s1, s2, θ, δ, ρ = self._unpack_params()
s1_ρ, s2_ρ = self.s1_ρ, self.s2_ρ

return _pers_till_sync(n1_0, n2_0, s1_ρ, s2_ρ,
s1, s2, θ, δ, ρ, maxiter, npers)

def create_attraction_basis(self, maxiter=250, npers=3, npts=50):
"""
Creates an attraction basis for values of n on [0, 1] X [0, 1]
with npts in each dimension
"""
Unpack parameters
s1, s2, θ, δ, ρ = self._unpack_params()
s1_ρ, s2_ρ = self.s1_ρ, self.s2_ρ

ab = _create_attraction_basis(s1_ρ, s2_ρ, s1, s2, θ, δ,
ρ, maxiter, npers, npts)

return ab

4.4.1 Time Series of Firm Measures

We write a short function below that exploits the preceding code and plots two time series.
Each time series gives the dynamics for the two countries.
The time series share parameters but differ in their initial condition.
Here’s the function

def plot_timeseries(n1_0, n2_0, s1=0.5, θ=2.5,
δ=0.7, ρ=0.2, ax=None, title=''):

"""
Plot a single time series with initial conditions
"""
if ax is None:

fig, ax = plt.subplots()

Create the MSG Model and simulate with initial conditions
model = MSGSync(s1, θ, δ, ρ)
n1, n2 = model.simulate_n(n1_0, n2_0, 25)

ax.plot(np.arange(25), n1, label="n_1", lw=2)

(continues on next page)

4.4. Simulation 59

Equilibrium Models

(continued from previous page)

ax.plot(np.arange(25), n2, label="n_2", lw=2)

ax.legend()
ax.set(title=title, ylim=(0.15, 0.8))

return ax

Create figure
fig, ax = plt.subplots(2, 1, figsize=(10, 8))

plot_timeseries(0.15, 0.35, ax=ax[0], title='Not Synchronized')
plot_timeseries(0.4, 0.3, ax=ax[1], title='Synchronized')

fig.tight_layout()

plt.show()

In the first case, innovation in the two countries does not synchronize.
In the second case, different initial conditions are chosen, and the cycles become synchronized.

60 Chapter 4. Globalization and Cycles

Equilibrium Models

4.4.2 Basin of Attraction

Next, let’s study the initial conditions that lead to synchronized cycles more systematically.
We generate time series from a large collection of different initial conditions and mark those conditions with different
colors according to whether synchronization occurs or not.
The next display shows exactly this for four different parameterizations (one for each subfigure).
Dark colors indicate synchronization, while light colors indicate failure to synchronize.

As you can see, larger values of 𝜌 translate to more synchronization.
You are asked to replicate this figure in the exercises.
In the solution to the exercises, you’ll also find a figure with sliders, allowing you to experiment with different parameters.
Here’s one snapshot from the interactive figure

4.4. Simulation 61

Equilibrium Models

62 Chapter 4. Globalization and Cycles

Equilibrium Models

4.5 Exercises

Exercise 4.5.1
Replicate the figure shown above by coloring initial conditions according to whether or not synchronization occurs from
those conditions.

Solution to Exercise 4.5.1

def plot_attraction_basis(s1=0.5, θ=2.5, δ=0.7, ρ=0.2, npts=250, ax=None):
if ax is None:

fig, ax = plt.subplots()

Create attraction basis
unitrange = np.linspace(0, 1, npts)
model = MSGSync(s1, θ, δ, ρ)
ab = model.create_attraction_basis(npts=npts)
cf = ax.pcolormesh(unitrange, unitrange, ab, cmap="viridis")

return ab, cf

fig = plt.figure(figsize=(14, 12))

Left - Bottom - Width - Height
ax0 = fig.add_axes((0.05, 0.475, 0.38, 0.35), label="axes0")
ax1 = fig.add_axes((0.5, 0.475, 0.38, 0.35), label="axes1")
ax2 = fig.add_axes((0.05, 0.05, 0.38, 0.35), label="axes2")
ax3 = fig.add_axes((0.5, 0.05, 0.38, 0.35), label="axes3")

params = [[0.5, 2.5, 0.7, 0.2],
[0.5, 2.5, 0.7, 0.4],
[0.5, 2.5, 0.7, 0.6],
[0.5, 2.5, 0.7, 0.8]]

ab0, cf0 = plot_attraction_basis(*params[0], npts=500, ax=ax0)
ab1, cf1 = plot_attraction_basis(*params[1], npts=500, ax=ax1)
ab2, cf2 = plot_attraction_basis(*params[2], npts=500, ax=ax2)
ab3, cf3 = plot_attraction_basis(*params[3], npts=500, ax=ax3)

cbar_ax = fig.add_axes([0.9, 0.075, 0.03, 0.725])
plt.colorbar(cf0, cax=cbar_ax)

ax0.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.2$",
fontsize=22)

ax1.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.4$",
fontsize=22)

ax2.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.6$",
fontsize=22)

ax3.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.8$",
fontsize=22)

fig.suptitle("Synchronized versus Asynchronized 2-cycles",
x=0.475, y=0.915, size=26)

plt.show()

4.5. Exercises 63

Equilibrium Models

Additionally, instead of just seeing 4 plots at once, we might want to manually be able to change 𝜌 and see how it affects
the plot in real-time. Below we use an interactive plot to do this.
Note, interactive plotting requires the ipywidgets module to be installed and enabled.

def interact_attraction_basis(ρ=0.2, maxiter=250, npts=250):
Create the figure and axis that we will plot on
fig, ax = plt.subplots(figsize=(12, 10))

Create model and attraction basis
s1, θ, δ = 0.5, 2.5, 0.75
model = MSGSync(s1, θ, δ, ρ)
ab = model.create_attraction_basis(maxiter=maxiter, npts=npts)

Color map with colormesh
unitrange = np.linspace(0, 1, npts)
cf = ax.pcolormesh(unitrange, unitrange, ab, cmap="viridis")
cbar_ax = fig.add_axes([0.95, 0.15, 0.05, 0.7])
plt.colorbar(cf, cax=cbar_ax)
plt.show()
return None

fig = interact(interact_attraction_basis,

(continues on next page)

64 Chapter 4. Globalization and Cycles

https://github.com/jupyter-widgets/ipywidgets

Equilibrium Models

(continued from previous page)

ρ=(0.0, 1.0, 0.05),
maxiter=(50, 5000, 50),
npts=(25, 750, 25))

interactive(children=(FloatSlider(value=0.2, description='ρ', max=1.0, step=0.05),␣
↪IntSlider(value=250, descri…

4.5. Exercises 65

Equilibrium Models

66 Chapter 4. Globalization and Cycles

CHAPTER

FIVE

COASE’S THEORY OF THE FIRM

Contents

• Coase’s Theory of the Firm

– Overview

– The Model

– Equilibrium

– Existence, Uniqueness and Computation of Equilibria

– Implementation

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install interpolation

5.1 Overview

In 1937, Ronald Coase wrote a brilliant essay on the nature of the firm [Coase, 1937].
Coase was writing at a time when the Soviet Union was rising to become a significant industrial power.
At the same time, many free-market economies were afflicted by a severe and painful depression.
This contrast led to an intensive debate on the relative merits of decentralized, price-based allocation versus top-down
planning.
In themidst of this debate, Coasemade an important observation: even in free-market economies, a great deal of top-down
planning does in fact take place.
This is because firms form an integral part of free-market economies and, within firms, allocation is by planning.
In other words, free-market economies blend both planning (within firms) and decentralized production coordinated by
prices.
The question Coase asked is this: if prices and free markets are so efficient, then why do firms even exist?
Couldn’t the associated within-firm planning be done more efficiently by the market?
We’ll use the following imports:

67

Equilibrium Models

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize import fminbound
from interpolation import interp

5.1.1 Why Firms Exist

On top of asking a deep and fascinating question, Coase also supplied an illuminating answer: firms exist because of
transaction costs.
Here’s one example of a transaction cost:
Suppose agent A is considering setting up a small business and needs a web developer to construct and help run an online
store.
She can use the labor of agent B, a web developer, by writing up a freelance contract for these tasks and agreeing on a
suitable price.
But contracts like this can be time-consuming and difficult to verify

• How will agent A be able to specify exactly what she wants, to the finest detail, when she herself isn’t sure how the
business will evolve?

• And what if she isn’t familiar with web technology? How can she specify all the relevant details?
• And, if things go badly, will failure to comply with the contract be verifiable in court?

In this situation, perhaps it will be easier to employ agent B under a simple labor contract.
The cost of this contract is far smaller because such contracts are simpler and more standard.
The basic agreement in a labor contract is: B will do what A asks him to do for the term of the contract, in return for a
given salary.
Making this agreement is much easier than trying to map every task out in advance in a contract that will hold up in a
court of law.
So agent A decides to hire agent B and a firm of nontrivial size appears, due to transaction costs.

5.1.2 A Trade-Off

Actually, we haven’t yet come to the heart of Coase’s investigation.
The issue of why firms exist is a binary question: should firms have positive size or zero size?
A better and more general question is: what determines the size of firms?
The answer Coase came up with was that “a firm will tend to expand until the costs of organizing an extra transaction
within the firm become equal to the costs of carrying out the same transaction by means of an exchange on the open
market…” ([Coase, 1937], p. 395).
But what are these internal and external costs?
In short, Coase envisaged a trade-off between

• transaction costs, which add to the expense of operating between firms, and
• diminishing returns to management, which adds to the expense of operating within firms

68 Chapter 5. Coase’s Theory of the Firm

Equilibrium Models

We discussed an example of transaction costs above (contracts).
The other cost, diminishing returns to management, is a catch-all for the idea that big operations are increasingly costly
to manage.
For example, you could think of management as a pyramid, so hiring more workers to implement more tasks requires
expansion of the pyramid, and hence labor costs grow at a rate more than proportional to the range of tasks.
Diminishing returns to management makes in-house production expensive, favoring small firms.

5.1.3 Summary

Here’s a summary of our discussion:
• Firms grow because transaction costs encourage them to take some operations in house.
• But as they get large, in-house operations become costly due to diminishing returns to management.
• The size of firms is determined by balancing these effects, thereby equalizing the marginal costs of each form of
operation.

5.1.4 A Quantitative Interpretation

Coases ideas were expressed verbally, without any mathematics.
In fact, his essay is a wonderful example of how far you can get with clear thinking and plain English.
However, plain English is not good for quantitative analysis, so let’s bring some mathematical and computation tools to
bear.
In doing so we’ll add a bit more structure than Coase did, but this price will be worth paying.
Our exposition is based on [Kikuchi et al., 2018].

5.2 The Model

The model we study involves production of a single unit of a final good.
Production requires a linearly ordered chain, requiring sequential completion of a large number of processing stages.
The stages are indexed by 𝑡 ∈ [0, 1], with 𝑡 = 0 indicating that no tasks have been undertaken and 𝑡 = 1 indicating that
the good is complete.

5.2.1 Subcontracting

The subcontracting scheme by which tasks are allocated across firms is illustrated in the figure below
In this example,

• Firm 1 receives a contract to sell one unit of the completed good to a final buyer.
• Firm 1 then forms a contract with firm 2 to purchase the partially completed good at stage 𝑡1, with the intention of
implementing the remaining 1 − 𝑡1 tasks in-house (i.e., processing from stage 𝑡1 to stage 1).

• Firm 2 repeats this procedure, forming a contract with firm 3 to purchase the good at stage 𝑡2.
• Firm 3 decides to complete the chain, selecting 𝑡3 = 0.

5.2. The Model 69

Equilibrium Models

At this point, production unfolds in the opposite direction (i.e., from upstream to downstream).
• Firm 3 completes processing stages from 𝑡3 = 0 up to 𝑡2 and transfers the good to firm 2.
• Firm 2 then processes from 𝑡2 up to 𝑡1 and transfers the good to firm 1,
• Firm 1 processes from 𝑡1 to 1 and delivers the completed good to the final buyer.

The length of the interval of stages (range of tasks) carried out by firm 𝑖 is denoted by ℓ𝑖.

Each firm chooses only its upstream boundary, treating its downstream boundary as given.
The benefit of this formulation is that it implies a recursive structure for the decision problem for each firm.
In choosing how many processing stages to subcontract, each successive firm faces essentially the same decision problem
as the firm above it in the chain, with the only difference being that the decision space is a subinterval of the decision
space for the firm above.
We will exploit this recursive structure in our study of equilibrium.

70 Chapter 5. Coase’s Theory of the Firm

Equilibrium Models

5.2.2 Costs

Recall that we are considering a trade-off between two types of costs.
Let’s discuss these costs and how we represent them mathematically.
Diminishing returns to managementmeans rising costs per task when a firm expands the range of productive activities
coordinated by its managers.
We represent these ideas by taking the cost of carrying out ℓ tasks in-house to be 𝑐(ℓ), where 𝑐 is increasing and strictly
convex.
Thus, the average cost per task rises with the range of tasks performed in-house.
We also assume that 𝑐 is continuously differentiable, with 𝑐(0) = 0 and 𝑐′(0) > 0.
Transaction costs are represented as a wedge between the buyer’s and seller’s prices.
It matters little for us whether the transaction cost is borne by the buyer or the seller.
Here we assume that the cost is borne only by the buyer.
In particular, when two firms agree to a trade at face value 𝑣, the buyer’s total outlay is 𝛿𝑣, where 𝛿 > 1.
The seller receives only 𝑣, and the difference is paid to agents outside the model.

5.3 Equilibrium

We assume that all firms are ex-ante identical and act as price takers.
As price takers, they face a price function 𝑝, which is a map from [0, 1] to ℝ+, with 𝑝(𝑡) interpreted as the price of the
good at processing stage 𝑡.
There is a countable infinity of firms indexed by 𝑖 and no barriers to entry.
The cost of supplying the initial input (the good processed up to stage zero) is set to zero for simplicity.
Free entry and the infinite fringe of competitors rule out positive profits for incumbents, since any incumbent could be
replaced by a member of the competitive fringe filling the same role in the production chain.
Profits are never negative in equilibrium because firms can freely exit.

5.3.1 Informal Definition of Equilibrium

An equilibrium in this setting is an allocation of firms and a price function such that
1. all active firms in the chain make zero profits, including suppliers of raw materials
2. no firm in the production chain has an incentive to deviate, and
3. no inactive firms can enter and extract positive profits

5.3. Equilibrium 71

Equilibrium Models

5.3.2 Formal Definition of Equilibrium

Let’s make this definition more formal.
(You might like to skip this section on first reading)
An allocation of firms is a nonnegative sequence {ℓ𝑖}𝑖∈ℕ such that ℓ𝑖 = 0 for all sufficiently large 𝑖.
Recalling the figures above,

• ℓ𝑖 represents the range of tasks implemented by the 𝑖-th firm
As a labeling convention, we assume that firms enter in order, with firm 1 being the furthest downstream.
An allocation {ℓ𝑖} is called feasible if ∑ 𝑖≥1 ℓ𝑖 = 1.
In a feasible allocation, the entire production process is completed by finitely many firms.
Given a feasible allocation, {ℓ𝑖}, let {𝑡𝑖} represent the corresponding transaction stages, defined by

𝑡0 = 𝑠 and 𝑡𝑖 = 𝑡𝑖−1 − ℓ𝑖 (5.1)

In particular, 𝑡𝑖−1 is the downstream boundary of firm 𝑖 and 𝑡𝑖 is its upstream boundary.
As transaction costs are incurred only by the buyer, its profits are

𝜋𝑖 = 𝑝(𝑡𝑖−1) − 𝑐(ℓ𝑖) − 𝛿𝑝(𝑡𝑖) (5.2)

Given a price function 𝑝 and a feasible allocation {ℓ𝑖}, let
• {𝑡𝑖} be the corresponding firm boundaries.
• {𝜋𝑖} be corresponding profits, as defined in (5.2).

This price-allocation pair is called an equilibrium for the production chain if
1. 𝑝(0) = 0,
2. 𝜋𝑖 = 0 for all 𝑖, and
3. 𝑝(𝑠) − 𝑐(𝑠 − 𝑡) − 𝛿𝑝(𝑡) ≤ 0 for any pair 𝑠, 𝑡 with 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

The rationale behind these conditions was given in our informal definition of equilibrium above.

5.4 Existence, Uniqueness and Computation of Equilibria

We have defined an equilibrium but does one exist? Is it unique? And, if so, how can we compute it?

5.4.1 A Fixed Point Method

To address these questions, we introduce the operator 𝑇 mapping a nonnegative function 𝑝 on [0, 1] to 𝑇 𝑝 via

𝑇 𝑝(𝑠) = min
𝑡≤𝑠

{𝑐(𝑠 − 𝑡) + 𝛿𝑝(𝑡)} for all 𝑠 ∈ [0, 1]. (5.3)

Here and below, the restriction 0 ≤ 𝑡 in the minimum is understood.
The operator 𝑇 is similar to a Bellman operator.
Under this analogy, 𝑝 corresponds to a value function and 𝛿 to a discount factor.
But 𝛿 > 1, so 𝑇 is not a contraction in any obvious metric, and in fact, 𝑇 𝑛𝑝 diverges for many choices of 𝑝.

72 Chapter 5. Coase’s Theory of the Firm

Equilibrium Models

Nevertheless, there exists a domain on which 𝑇 is well-behaved: the set of convex increasing continuous functions
𝑝 ∶ [0, 1] → ℝ such that 𝑐′(0)𝑠 ≤ 𝑝(𝑠) ≤ 𝑐(𝑠) for all 0 ≤ 𝑠 ≤ 1.
We denote this set of functions by 𝒫.
In [Kikuchi et al., 2018] it is shown that the following statements are true:

1. 𝑇 maps 𝒫 into itself.
2. 𝑇 has a unique fixed point in 𝒫, denoted below by 𝑝∗.
3. For all 𝑝 ∈ 𝒫 we have 𝑇 𝑘𝑝 → 𝑝∗ uniformly as 𝑘 → ∞.

Now consider the choice function

𝑡∗(𝑠) ∶= the solution to min
𝑡≤𝑠

{𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)} (5.4)

By definition, 𝑡∗(𝑠) is the cost-minimizing upstream boundary for a firm that is contracted to deliver the good at stage 𝑠
and faces the price function 𝑝∗.
Since 𝑝∗ lies in𝒫 and since 𝑐 is strictly convex, it follows that the right-hand side of (5.4) is continuous and strictly convex
in 𝑡.
Hence the minimizer 𝑡∗(𝑠) exists and is uniquely defined.
We can use 𝑡∗ to construct an equilibrium allocation as follows:
Recall that firm 1 sells the completed good at stage 𝑠 = 1, its optimal upstream boundary is 𝑡∗(1).
Hence firm 2’s optimal upstream boundary is 𝑡∗(𝑡∗(1)).
Continuing in this way produces the sequence {𝑡∗

𝑖} defined by

𝑡∗
0 = 1 and 𝑡∗

𝑖 = 𝑡∗(𝑡𝑖−1) (5.5)

The sequence ends when a firm chooses to complete all remaining tasks.
We label this firm (and hence the number of firms in the chain) as

𝑛∗ ∶= inf{𝑖 ∈ ℕ ∶ 𝑡∗
𝑖 = 0} (5.6)

The task allocation corresponding to (5.5) is given by ℓ∗
𝑖 ∶= 𝑡∗

𝑖−1 − 𝑡∗
𝑖 for all 𝑖.

In [Kikuchi et al., 2018] it is shown that
1. The value 𝑛∗ in (5.6) is well-defined and finite,
2. the allocation {ℓ∗

𝑖 } is feasible, and
3. the price function 𝑝∗ and this allocation together forms an equilibrium for the production chain.

While the proofs are too long to repeat here, much of the insight can be obtained by observing that, as a fixed point of 𝑇 ,
the equilibrium price function must satisfy

𝑝∗(𝑠) = min
𝑡≤𝑠

{𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)} for all 𝑠 ∈ [0, 1] (5.7)

From this equation, it is clear that so profits are zero for all incumbent firms.

5.4. Existence, Uniqueness and Computation of Equilibria 73

Equilibrium Models

5.4.2 Marginal Conditions

We can develop some additional insights on the behavior of firms by examining marginal conditions associated with the
equilibrium.
As a first step, let ℓ∗(𝑠) ∶= 𝑠 − 𝑡∗(𝑠).
This is the cost-minimizing range of in-house tasks for a firm with downstream boundary 𝑠.
In [Kikuchi et al., 2018] it is shown that 𝑡∗ and ℓ∗ are increasing and continuous, while 𝑝∗ is continuously differentiable
at all 𝑠 ∈ (0, 1) with

(𝑝∗)′(𝑠) = 𝑐′(ℓ∗(𝑠)) (5.8)

Equation (5.8) follows from 𝑝∗(𝑠) = min𝑡≤𝑠 {𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)} and the envelope theorem for derivatives.
A related equation is the first order condition for 𝑝∗(𝑠) = min𝑡≤𝑠 {𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)}, the minimization problem for a
firm with upstream boundary 𝑠, which is

𝛿(𝑝∗)′(𝑡∗(𝑠)) = 𝑐′(𝑠 − 𝑡∗(𝑠)) (5.9)

This condition matches the marginal condition expressed verbally by Coase that we stated above:
“A firm will tend to expand until the costs of organizing an extra transaction within the firm become equal
to the costs of carrying out the same transaction by means of an exchange on the open market…”

Combining (5.8) and (5.9) and evaluating at 𝑠 = 𝑡𝑖, we see that active firms that are adjacent satisfy

𝛿 𝑐′(ℓ∗
𝑖+1) = 𝑐′(ℓ∗

𝑖) (5.10)

In other words, the marginal in-house cost per task at a given firm is equal to that of its upstream partner multiplied by
gross transaction cost.
This expression can be thought of as a Coase–Euler equation, which determines inter-firm efficiency by indicating how
two costly forms of coordination (markets and management) are jointly minimized in equilibrium.

5.5 Implementation

For most specifications of primitives, there is no closed-form solution for the equilibrium as far as we are aware.
However, we know that we can compute the equilibrium corresponding to a given transaction cost parameter 𝛿 and a cost
function 𝑐 by applying the results stated above.
In particular, we can

1. fix initial condition 𝑝 ∈ 𝒫,
2. iterate with 𝑇 until 𝑇 𝑛𝑝 has converged to 𝑝∗, and
3. recover firm choices via the choice function (5.3)

At each iterate, we will use continuous piecewise linear interpolation of functions.
To begin, here’s a class to store primitives and a grid:

class ProductionChain:

def __init__(self,
n=1000,

(continues on next page)

74 Chapter 5. Coase’s Theory of the Firm

Equilibrium Models

(continued from previous page)

delta=1.05,
c=lambda t: np.exp(10 * t) - 1):

self.n, self.delta, self.c = n, delta, c
self.grid = np.linspace(1e-04, 1, n)

Now let’s implement and iterate with 𝑇 until convergence.
Recalling that our initial condition must lie in 𝒫, we set 𝑝0 = 𝑐

def compute_prices(pc, tol=1e-5, max_iter=5000):
"""
Compute prices by iterating with T

* pc is an instance of ProductionChain
* The initial condition is p = c

"""
delta, c, n, grid = pc.delta, pc.c, pc.n, pc.grid
p = c(grid) # Initial condition is c(s), as an array
new_p = np.empty_like(p)
error = tol + 1
i = 0

while error > tol and i < max_iter:
for j, s in enumerate(grid):

Tp = lambda t: delta * interp(grid, p, t) + c(s - t)
new_p[j] = Tp(fminbound(Tp, 0, s))

error = np.max(np.abs(p - new_p))
p = new_p
i = i + 1

if i < max_iter:
print(f"Iteration converged in {i} steps")

else:
print(f"Warning: iteration hit upper bound {max_iter}")

p_func = lambda x: interp(grid, p, x)
return p_func

The next function computes optimal choice of upstream boundary and range of task implemented for a firm face price
function p_function and with downstream boundary 𝑠.

def optimal_choices(pc, p_function, s):
"""
Takes p_func as the true function, minimizes on [0,s]

Returns optimal upstream boundary t_star and optimal size of
firm ell_star

In fact, the algorithm minimizes on [-1,s] and then takes the
max of the minimizer and zero. This results in better results
close to zero

"""
delta, c = pc.delta, pc.c

(continues on next page)

5.5. Implementation 75

Equilibrium Models

(continued from previous page)

f = lambda t: delta * p_function(t) + c(s - t)
t_star = max(fminbound(f, -1, s), 0)
ell_star = s - t_star
return t_star, ell_star

The allocation of firms can be computed by recursively stepping through firms’ choices of their respective upstream
boundary, treating the previous firm’s upstream boundary as their own downstream boundary.
In doing so, we start with firm 1, who has downstream boundary 𝑠 = 1.

def compute_stages(pc, p_function):
s = 1.0
transaction_stages = [s]
while s > 0:

s, ell = optimal_choices(pc, p_function, s)
transaction_stages.append(s)

return np.array(transaction_stages)

Let’s try this at the default parameters.
The next figure shows the equilibrium price function, as well as the boundaries of firms as vertical lines

pc = ProductionChain()
p_star = compute_prices(pc)

transaction_stages = compute_stages(pc, p_star)

fig, ax = plt.subplots()

ax.plot(pc.grid, p_star(pc.grid))
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0)
for s in transaction_stages:

ax.axvline(x=s, c="0.5")
plt.show()

Iteration converged in 2 steps

76 Chapter 5. Coase’s Theory of the Firm

Equilibrium Models

Here’s the function ℓ∗, which shows how large a firm with downstream boundary 𝑠 chooses to be

ell_star = np.empty(pc.n)
for i, s in enumerate(pc.grid):

t, e = optimal_choices(pc, p_star, s)
ell_star[i] = e

fig, ax = plt.subplots()
ax.plot(pc.grid, ell_star, label="ℓ^*")
ax.legend(fontsize=14)
plt.show()

5.5. Implementation 77

Equilibrium Models

Note that downstream firms choose to be larger, a point we return to below.

5.6 Exercises

Exercise 5.6.1
The number of firms is endogenously determined by the primitives.
What do you think will happen in terms of the number of firms as 𝛿 increases? Why?
Check your intuition by computing the number of firms at delta in (1.01, 1.05, 1.1).

Solution to Exercise 5.6.1
Here is one solution

for delta in (1.01, 1.05, 1.1):

pc = ProductionChain(delta=delta)
p_star = compute_prices(pc)
transaction_stages = compute_stages(pc, p_star)
num_firms = len(transaction_stages)
print(f"When delta={delta} there are {num_firms} firms")

Iteration converged in 2 steps
When delta=1.01 there are 64 firms

78 Chapter 5. Coase’s Theory of the Firm

Equilibrium Models

Iteration converged in 2 steps
When delta=1.05 there are 41 firms

Iteration converged in 2 steps
When delta=1.1 there are 35 firms

Exercise 5.6.2
The value added of firm 𝑖 is 𝑣𝑖 ∶= 𝑝∗(𝑡𝑖−1) − 𝑝∗(𝑡𝑖).
One of the interesting predictions of the model is that value added is increasing with downstreamness, as are several other
measures of firm size.
Can you give any intution?
Try to verify this phenomenon (value added increasing with downstreamness) using the code above.

Solution to Exercise 5.6.2
Firm size increases with downstreamness because 𝑝∗, the equilibrium price function, is increasing and strictly convex.
This means that, for a given producer, the marginal cost of the input purchased from the producer just upstream from
itself in the chain increases as we go further downstream.
Hence downstream firms choose to do more in house than upstream firms — and are therefore larger.
The equilibrium price function is strictly convex due to both transaction costs and diminishing returns to management.
One way to put this is that firms are prevented from completely mitigating the costs associated with diminishing returns
to management — which induce convexity — by transaction costs. This is because transaction costs force firms to have
nontrivial size.
Here’s one way to compute and graph value added across firms

pc = ProductionChain()
p_star = compute_prices(pc)
stages = compute_stages(pc, p_star)

va = []

for i in range(len(stages) - 1):
va.append(p_star(stages[i]) - p_star(stages[i+1]))

fig, ax = plt.subplots()
ax.plot(va, label="value added by firm")
ax.set_xticks((5, 25))
ax.set_xticklabels(("downstream firms", "upstream firms"))
plt.show()

Iteration converged in 2 steps

5.6. Exercises 79

Equilibrium Models

80 Chapter 5. Coase’s Theory of the Firm

Part II

Auctions & Other Applications

81

CHAPTER

SIX

FIRST-PRICE AND SECOND-PRICE AUCTIONS

This lecture is designed to set the stage for a subsequent lecture about Multiple Good Allocation Mechanisms
In that lecture, a planner or auctioneer simultaneously allocates several goods to set of people.
In the present lecture, a single good is allocated to one person within a set of people.
Here we’ll learn about and simulate two classic auctions :

• a First-Price Sealed-Bid Auction (FPSB)
• a Second-Price Sealed-Bid Auction (SPSB) created by William Vickrey [Vickrey, 1961]

We’ll also learn about and apply a
• Revenue Equivalent Theorem

We recommend watching this video about second price auctions by Anders Munk-Nielsen:

https://youtu.be/qwWk_Bqtue8

and

https://youtu.be/eYTGQCGpmXI

Anders Munk-Nielsen put his code on GitHub.
Much of our Python code below is based on his.

6.1 First-Price Sealed-Bid Auction (FPSB)

Protocols:
• A single good is auctioned.
• Prospective buyers simultaneously submit sealed bids.
• Each bidder knows only his/her own bid.
• The good is allocated to the person who submits the highest bid.
• The winning bidder pays price she has bid.

Detailed Setting:
There are 𝑛 > 2 prospective buyers named 𝑖 = 1, 2, … , 𝑛.
Buyer 𝑖 attaches value 𝑣𝑖 to the good being sold.

83

https://python.quantecon.org/house_auction.html
https://youtu.be/qwWk_Bqtue8
https://youtu.be/eYTGQCGpmXI
https://github.com/GamEconCph/Lectures-2021/tree/main/Bayesian%20Games

Equilibrium Models

Buyer 𝑖 wants to maximize the expected value of her surplus defined as 𝑣𝑖 − 𝑝, where 𝑝 is the price that she pays,
conditional on her winning the auction.
Evidently,

• If 𝑖 bids exactly 𝑣𝑖, she pays what she thinks it is worth and gathers no surplus value.
• Buyer 𝑖 will never want to bid more than 𝑣𝑖.
• If buyer 𝑖 bids 𝑏 < 𝑣𝑖 and wins the auction, then she gathers surplus value 𝑏 − 𝑣𝑖 > 0.
• If buyer 𝑖 bids 𝑏 < 𝑣𝑖 and someone else bids more than 𝑏, buyer 𝑖 loses the auction and gets no surplus value.
• To proceed, buyer 𝑖 wants to know the probability that she wins the auction as a function of her bid 𝑣𝑖

– this requires that she know a probability distribution of bids 𝑣𝑗 made by prospective buyers 𝑗 ≠ 𝑖
• Given her idea about that probability distribution, buyer 𝑖 wants to set a bid that maximizes the mathematical
expectation of her surplus value.

Bids are sealed, so no bidder knows bids submitted by other prospective buyers.
This means that bidders are in effect participating in a game in which players do not know payoffs of other players.
This is a Bayesian game, a Nash equilibrium of which is called a Bayesian Nash equilibrium.
To complete the specification of the situation, we’ll assume that prospective buyers’ valuations are independently and
identically distributed according to a probability distribution that is known by all bidders.
Bidder optimally chooses to bid less than 𝑣𝑖.

6.1.1 Characterization of FPSB Auction

A FPSB auction has a unique symmetric Bayesian Nash Equilibrium.
The optimal bid of buyer 𝑖 is

E[𝑦𝑖|𝑦𝑖 < 𝑣𝑖] (6.1)

where 𝑣𝑖 is the valuation of bidder 𝑖 and 𝑦𝑖 is the maximum valuation of all other bidders:

𝑦𝑖 = max
𝑗≠𝑖

𝑣𝑗 (6.2)

A proof for this assertion is available at the Wikepedia page about Vickrey auctions

6.2 Second-Price Sealed-Bid Auction (SPSB)

Protocols: In a second-price sealed-bid (SPSB) auction, the winner pays the second-highest bid.

6.3 Characterization of SPSB Auction

In a SPSB auction bidders optimally choose to bid their values.
Formally, a dominant strategy profile in a SPSB auction with a single, indivisible item has each bidder bidding its value.
A proof is provided at the Wikepedia page about Vickrey auctions

84 Chapter 6. First-Price and Second-Price Auctions

https://en.wikipedia.org/wiki/Vickrey_auction
https://en.wikipedia.org/wiki/Vickrey_auction

Equilibrium Models

6.4 Uniform Distribution of Private Values

We assume valuation 𝑣𝑖 of bidder 𝑖 is distributed 𝑣𝑖
i.i.d.∼ 𝑈(0, 1).

Under this assumption, we can analytically compute probability distributions of prices bid in both FPSB and SPSB.
We’ll simulate outcomes and, by using a law of large numbers, verify that the simulated outcomes agree with analytical
ones.
We can use our simulation to illustrate a Revenue Equivalence Theorem that asserts that on average first-price and
second-price sealed bid auctions provide a seller the same revenue.
To read about the revenue equivalence theorem, see this Wikepedia page

6.5 Setup

There are 𝑛 bidders.
Each bidder knows that there are 𝑛 − 1 other bidders.

6.6 First price sealed bid auction

An optimal bid for bidder 𝑖 in a FPSB is described by equations (6.1) and (6.2).
When bids are i.i.d. draws from a uniform distribution, the CDF of 𝑦𝑖 is

̃𝐹𝑛−1(𝑦) = P(𝑦𝑖 ≤ 𝑦) = P(max
𝑗≠𝑖

𝑣𝑗 ≤ 𝑦)

= ∏
𝑗≠𝑖

P(𝑣𝑗 ≤ 𝑦)

= 𝑦𝑛−1

and the PDF of 𝑦𝑖 is ̃𝑓𝑛−1(𝑦) = (𝑛 − 1)𝑦𝑛−2.
Then bidder 𝑖’s optimal bid in a FPSB auction is:

E(𝑦𝑖|𝑦𝑖 < 𝑣𝑖) =
∫𝑣𝑖
0 𝑦𝑖 ̃𝑓𝑛−1(𝑦𝑖)𝑑𝑦𝑖

∫𝑣𝑖
0

̃𝑓𝑛−1(𝑦𝑖)𝑑𝑦𝑖

=
∫𝑣𝑖
0 (𝑛 − 1)𝑦𝑛−1

𝑖 𝑑𝑦𝑖

∫𝑣𝑖
0 (𝑛 − 1)𝑦𝑛−2

𝑖 𝑑𝑦𝑖

= 𝑛 − 1
𝑛 𝑦𝑖∣

𝑣𝑖

0

= 𝑛 − 1
𝑛 𝑣𝑖

6.4. Uniform Distribution of Private Values 85

https://en.wikipedia.org/wiki/Revenue_equivalence

Equilibrium Models

6.7 Second Price Sealed Bid Auction

In a SPSB, it is optimal for bidder 𝑖 to bid 𝑣𝑖.

6.8 Python Code

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import scipy.interpolate as interp

for plots
plt.rcParams.update({"text.usetex": True, 'font.size': 14})
colors = plt. rcParams['axes.prop_cycle'].by_key()['color']

ensure the notebook generate the same randomess
np.random.seed(1337)

We repeat an auction with 5 bidders for 100,000 times.
The valuations of each bidder is distributed 𝑈(0, 1).

N = 5
R = 100_000

v = np.random.uniform(0,1,(N,R))

BNE in first-price sealed bid

b_star = lambda vi,N :((N-1)/N) * vi
b = b_star(v,N)

We compute and sort bid price distributions that emerge under both FPSB and SPSB.

idx = np.argsort(v, axis=0) # Biders' values are sorted in ascending order in each␣
↪auction.

We record the order because we want to apply it to bid price and their id.

v = np.take_along_axis(v, idx, axis=0) # same as np.sort(v, axis=0), except now we␣
↪retain the idx

b = np.take_along_axis(b, idx, axis=0)

ii = np.repeat(np.arange(1,N+1)[:,None], R, axis=1) # the id for the bidders is␣
↪created.

ii = np.take_along_axis(ii, idx, axis=0) # the id is sorted according to bid price␣
↪as well.

winning_player = ii[-1,:] # In FPSB and SPSB, winners are those with highest values.

winner_pays_fpsb = b[-1,:] # highest bid
winner_pays_spsb = v[-2,:] # 2nd-highest valuation

Let’s now plot the winning bids 𝑏(𝑛) (i.e. the payment) against valuations, 𝑣(𝑛) for both FPSB and SPSB.

86 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

Note that
• FPSB: There is a unique bid corresponding to each valuation
• SPSB: Because it equals the valuation of a second-highest bidder, what a winner pays varies even holding fixed the
winner’s valuation. So here there is a frequency distribution of payments for each valuation.

We intend to compute average payments of different groups of bidders

binned = stats.binned_statistic(v[-1,:], v[-2,:], statistic='mean', bins=20)
xx = binned.bin_edges
xx = [(xx[ii]+xx[ii+1])/2 for ii in range(len(xx)-1)]
yy = binned.statistic

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(xx, yy, label='SPSB average payment')
ax.plot(v[-1,:], b[-1,:], '--', alpha = 0.8, label = 'FPSB analytic')
ax.plot(v[-1,:], v[-2,:], 'o', alpha = 0.05, markersize = 0.1, label = 'SPSB: actual␣

↪bids')

ax.legend(loc='best')
ax.set_xlabel('Valuation, v_i')
ax.set_ylabel('Bid, b_i')
sns.despine()

6.8. Python Code 87

Equilibrium Models

6.9 Revenue Equivalence Theorem

We now compare FPSB and a SPSB auctions from the point of view of the revenues that a seller can expect to acquire.
Expected Revenue FPSB:
The winner with valuation 𝑦 pays 𝑛−1

𝑛 ∗ 𝑦, where n is the number of bidders.
Above we computed that the CDF is 𝐹𝑛(𝑦) = 𝑦𝑛 and the PDF is 𝑓𝑛 = 𝑛𝑦𝑛−1.
Consequently, expected revenue is

R = ∫
1

0

𝑛 − 1
𝑛 𝑣𝑖 × 𝑛𝑣𝑛−1

𝑖 𝑑𝑣𝑖 = 𝑛 − 1
𝑛 + 1

Expected Revenue SPSB:
The expected revenue equals n × expected payment of a bidder.
Computing this we get

TR = 𝑛Evi [Eyi [𝑦𝑖|𝑦𝑖 < 𝑣𝑖]P(𝑦𝑖 < 𝑣𝑖) + 0 × P(𝑦𝑖 > 𝑣𝑖)]
= 𝑛Evi [Eyi [𝑦𝑖|𝑦𝑖 < 𝑣𝑖] ̃𝐹𝑛−1(𝑣𝑖)]

= 𝑛Evi [
𝑛 − 1

𝑛 × 𝑣𝑖 × 𝑣𝑛−1
𝑖]

= (𝑛 − 1)Evi [𝑣𝑛
𝑖]

= 𝑛 − 1
𝑛 + 1

Thus, while probability distributions of winning bids typically differ across the two types of auction, we deduce that
expected payments are identical in FPSB and SPSB.

fig, ax = plt.subplots(figsize=(6, 4))

for payment,label in zip([winner_pays_fpsb, winner_pays_spsb], ['FPSB', 'SPSB']):
print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f'% (label,

↪payment.mean(),payment.std(),np.median(payment)))
ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')
sns.despine()

The average payment of FPSB: 0.6665. Std.: 0.1129. Median: 0.6967
The average payment of SPSB: 0.6667. Std.: 0.1782. Median: 0.6862

88 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

Summary of FPSB and SPSB results with uniform distribution on [0, 1]

Auction: Sealed-Bid First-Price Second-Price
Winner Agent with highest bid Agent with highest bid
Winner pays Winner’s bid Second-highest bid
Loser pays 0 0
Dominant strategy No dominant strategy Bidding truthfully is dominant strategy
Bayesian Nash equilibrium Bidder 𝑖 bids 𝑛−1

𝑛 𝑣𝑖 Bidder 𝑖 truthfully bids 𝑣𝑖
Auctioneer’s revenue 𝑛−1

𝑛+1
𝑛−1
𝑛+1

Detour: Computing a Bayesian Nash Equibrium for FPSB
The Revenue Equivalence Theorem lets us an optimal bidding strategy for a FPSB auction from outcomes of a SPSB
auction.
Let 𝑏(𝑣𝑖) be the optimal bid in a FPSB auction.
The revenue equivalence theorem tells us that a bidder agent with value 𝑣𝑖 on average receives the same payment in the
two types of auction.
Consequently,

𝑏(𝑣𝑖)P(𝑦𝑖 < 𝑣𝑖) + 0 ∗ P(𝑦𝑖 ≥ 𝑣𝑖) = E𝑦𝑖
[𝑦𝑖|𝑦𝑖 < 𝑣𝑖]P(𝑦𝑖 < 𝑣𝑖) + 0 ∗ P(𝑦𝑖 ≥ 𝑣𝑖)

It follows that an optimal bidding strategy in a FPSB auction is 𝑏(𝑣𝑖) = E𝑦𝑖
[𝑦𝑖|𝑦𝑖 < 𝑣𝑖].

6.9. Revenue Equivalence Theorem 89

Equilibrium Models

6.10 Calculation of Bid Price in FPSB

In equations (6.1) and (6.1), we displayed formulas for optimal bids in a symmetric Bayesian Nash Equilibrium of a FPSB
auction.

E[𝑦𝑖|𝑦𝑖 < 𝑣𝑖]

where
• 𝑣𝑖 = value of bidder 𝑖
• 𝑦𝑖 =: maximum value of all bidders except 𝑖, i.e., 𝑦𝑖 = max𝑗≠𝑖 𝑣𝑗

Above, we computed an optimal bid price in a FPSB auction analytically for a case in which private values are uniformly
distributed.
For most probability distributions of private values, analytical solutions aren’t easy to compute.
Instead, we can compute bid prices in FPSB auctions numerically as functions of the distribution of private values.

def evaluate_largest(v_hat, array, order=1):
"""
A method to estimate the largest (or certain-order largest) value of the other␣

↪biders,
conditional on player 1 wins the auction.

Parameters:

v_hat : float, the value of player 1. The biggest value in the auction that␣

↪player 1 wins.

array: 2 dimensional array of bidders' values in shape of (N,R),
where N: number of players, R: number of auctions

order: int. The order of largest number among bidders who lose.
e.g. the order for largest number beside winner is 1.

the order for second-largest number beside winner is 2.

"""
N,R = array.shape
array_residual=array[1:,:].copy() # drop the first row because we assume first␣

↪row is the winner's bid

index=(array_residual<v_hat).all(axis=0)
array_conditional=array_residual[:,index].copy()

array_conditional=np.sort(array_conditional, axis=0)
return array_conditional[-order,:].mean()

We can check the accuracy of our evaluate_largest method by comparing it with an analytical solution.
We find that despite small discrepancy, the evaluate_largest method functions well.
Furthermore, if we take a very large number of auctions, say 1 million, the discrepancy disappears.

v_grid = np.linspace(0.3,1,8)
bid_analytical = b_star(v_grid,N)
bid_simulated = [evaluate_largest(ii, v) for ii in v_grid]

(continues on next page)

90 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

(continued from previous page)

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, bid_analytical, '-', color='k', label='Analytical')
ax.plot(v_grid, bid_simulated, '--', color='r', label='Simulated')

ax.legend(loc='best')
ax.set_xlabel('Valuation, v_i')
ax.set_ylabel('Bid, b_i')
ax.set_title('Solution for FPSB')
sns.despine()

6.11 𝜒2 Distribution

Let’s try an example in which the distribution of private values is a 𝜒2 distribution.
We’ll start by taking a look at a 𝜒2 distribution with the help of the following Python code:

np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N*R,))

plt.hist(v, bins=50, edgecolor='w')
plt.xlabel('Values: v')
plt.show()

6.11. 𝜒2 Distribution 91

Equilibrium Models

Now we’ll get Python to construct a bid price function

np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N,R))

we compute the quantile of v as our grid
pct_quantile = np.linspace(0, 100, 101)[1:-1]
v_grid = np.percentile(v.flatten(), q=pct_quantile)

EV=[evaluate_largest(ii, v) for ii in v_grid]
nan values are returned for some low quantiles due to lack of observations

/tmp/ipykernel_6757/521884726.py:25: RuntimeWarning: Mean of empty slice.
return array_conditional[-order,:].mean()

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/numpy/core/_
↪methods.py:129: RuntimeWarning: invalid value encountered in scalar divide
ret = ret.dtype.type(ret / rcount)

we insert 0 into our grid and bid price function as a complement
EV=np.insert(EV,0,0)
v_grid=np.insert(v_grid,0,0)

b_star_num = interp.interp1d(v_grid, EV, fill_value="extrapolate")

We check our bid price function by computing and visualizing the result.

92 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

pct_quantile_fine = np.linspace(0, 100, 1001)[1:-1]
v_grid_fine = np.percentile(v.flatten(), q=pct_quantile_fine)

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, EV, 'or', label='Simulation on Grid')
ax.plot(v_grid_fine, b_star_num(v_grid_fine) , '-', label='Interpolation Solution')

ax.legend(loc='best')
ax.set_xlabel('Valuation, v_i')
ax.set_ylabel('Optimal Bid in FPSB')
sns.despine()

Now we can use Python to compute the probability distribution of the price paid by the winning bidder

b=b_star_num(v)

idx = np.argsort(v, axis=0)
v = np.take_along_axis(v, idx, axis=0) # same as np.sort(v, axis=0), except now we␣

↪retain the idx
b = np.take_along_axis(b, idx, axis=0)

ii = np.repeat(np.arange(1,N+1)[:,None], R, axis=1)
ii = np.take_along_axis(ii, idx, axis=0)

winning_player = ii[-1,:]

winner_pays_fpsb = b[-1,:] # highest bid
winner_pays_spsb = v[-2,:] # 2nd-highest valuation

6.11. 𝜒2 Distribution 93

Equilibrium Models

fig, ax = plt.subplots(figsize=(6, 4))

for payment,label in zip([winner_pays_fpsb, winner_pays_spsb], ['FPSB', 'SPSB']):
print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f'% (label,

↪payment.mean(),payment.std(),np.median(payment)))
ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')
sns.despine()

The average payment of FPSB: 2.5693. Std.: 0.8383. Median: 2.5829
The average payment of SPSB: 2.5661. Std.: 1.3580. Median: 2.3180

6.12 5 Code Summary

We assemble the functions that we have used into a Python class

class bid_price_solution:

def __init__(self, array):
"""
A class that can plot the value distribution of bidders,
compute the optimal bid price for bidders in FPSB

(continues on next page)

94 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

(continued from previous page)

and plot the distribution of winner's payment in both FPSB and SPSB

Parameters:

array: 2 dimensional array of bidders' values in shape of (N,R),
where N: number of players, R: number of auctions

"""
self.value_mat=array.copy()

return None

def plot_value_distribution(self):
plt.hist(self.value_mat.flatten(), bins=50, edgecolor='w')
plt.xlabel('Values: v')
plt.show()

return None

def evaluate_largest(self, v_hat, order=1):
N,R = self.value_mat.shape
array_residual = self.value_mat[1:,:].copy()
drop the first row because we assume first row is the winner's bid

index=(array_residual<v_hat).all(axis=0)
array_conditional=array_residual[:,index].copy()

array_conditional=np.sort(array_conditional, axis=0)

return array_conditional[-order,:].mean()

def compute_optimal_bid_FPSB(self):
we compute the quantile of v as our grid
pct_quantile = np.linspace(0, 100, 101)[1:-1]
v_grid = np.percentile(self.value_mat.flatten(), q=pct_quantile)

EV=[self.evaluate_largest(ii) for ii in v_grid]
nan values are returned for some low quantiles due to lack of observations

we insert 0 into our grid and bid price function as a complement
EV=np.insert(EV,0,0)
v_grid=np.insert(v_grid,0,0)

self.b_star_num = interp.interp1d(v_grid, EV, fill_value="extrapolate")

pct_quantile_fine = np.linspace(0, 100, 1001)[1:-1]
v_grid_fine = np.percentile(self.value_mat.flatten(), q=pct_quantile_fine)

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, EV, 'or', label='Simulation on Grid')
ax.plot(v_grid_fine, self.b_star_num(v_grid_fine) , '-', label='Interpolation␣

↪Solution')

ax.legend(loc='best')

(continues on next page)

6.12. 5 Code Summary 95

Equilibrium Models

(continued from previous page)

ax.set_xlabel('Valuation, v_i')
ax.set_ylabel('Optimal Bid in FPSB')
sns.despine()

return None

def plot_winner_payment_distribution(self):
self.b = self.b_star_num(self.value_mat)

idx = np.argsort(self.value_mat, axis=0)
self.v = np.take_along_axis(self.value_mat, idx, axis=0) # same as np.sort(v,

↪ axis=0), except now we retain the idx
self.b = np.take_along_axis(self.b, idx, axis=0)

self.ii = np.repeat(np.arange(1,N+1)[:,None], R, axis=1)
self.ii = np.take_along_axis(self.ii, idx, axis=0)

winning_player = self.ii[-1,:]

winner_pays_fpsb = self.b[-1,:] # highest bid
winner_pays_spsb = self.v[-2,:] # 2nd-highest valuation

fig, ax = plt.subplots(figsize=(6, 4))

for payment,label in zip([winner_pays_fpsb, winner_pays_spsb], ['FPSB', 'SPSB
↪']):

print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f'%␣
↪(label,payment.mean(),payment.std(),np.median(payment)))

ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')
sns.despine()

return None

np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N,R))

chi_squ_case = bid_price_solution(v)

chi_squ_case.plot_value_distribution()

96 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

chi_squ_case.compute_optimal_bid_FPSB()

/tmp/ipykernel_6757/919518230.py:37: RuntimeWarning: Mean of empty slice.
return array_conditional[-order,:].mean()

/home/runner/miniconda3/envs/quantecon/lib/python3.11/site-packages/numpy/core/_
↪methods.py:129: RuntimeWarning: invalid value encountered in scalar divide
ret = ret.dtype.type(ret / rcount)

6.12. 5 Code Summary 97

Equilibrium Models

chi_squ_case.plot_winner_payment_distribution()

The average payment of FPSB: 2.5693. Std.: 0.8383. Median: 2.5829
The average payment of SPSB: 2.5661. Std.: 1.3580. Median: 2.3180

98 Chapter 6. First-Price and Second-Price Auctions

Equilibrium Models

6.13 References

1. Wikipedia for FPSB: https://en.wikipedia.org/wiki/First-price_sealed-bid_auction
2. Wikipedia for SPSB: https://en.wikipedia.org/wiki/Vickrey_auction
3. Chandra Chekuri’s lecture note for algorithmic game theory: http://chekuri.cs.illinois.edu/teaching/spring2008/

Lectures/scribed/Notes20.pdf
4. Tim Salmon. ECO 4400 Supplemental Handout: All About Auctions: https://s2.smu.edu/tsalmon/auctions.pdf
5. Auction Theory- Revenue Equivalence Theorem: https://michaellevet.wordpress.com/2015/07/06/

auction-theory-revenue-equivalence-theorem/
6. Order Statistics: https://online.stat.psu.edu/stat415/book/export/html/834

6.13. References 99

https://en.wikipedia.org/wiki/First-price_sealed-bid_auction
https://en.wikipedia.org/wiki/Vickrey_auction
http://chekuri.cs.illinois.edu/teaching/spring2008/Lectures/scribed/Notes20.pdf
http://chekuri.cs.illinois.edu/teaching/spring2008/Lectures/scribed/Notes20.pdf
https://s2.smu.edu/tsalmon/auctions.pdf
https://michaellevet.wordpress.com/2015/07/06/auction-theory-revenue-equivalence-theorem/
https://michaellevet.wordpress.com/2015/07/06/auction-theory-revenue-equivalence-theorem/
https://online.stat.psu.edu/stat415/book/export/html/834

Equilibrium Models

100 Chapter 6. First-Price and Second-Price Auctions

CHAPTER

SEVEN

MULTIPLE GOOD ALLOCATION MECHANISMS

!pip install prettytable

7.1 Overview

This lecture describes two mechanisms for allocating 𝑛 private goods (“houses”) to 𝑚 people (“buyers”).
We assume that 𝑚 > 𝑛 so that there are more potential buyers than there are houses.
Prospective buyers regard the houses as substitutes.
Buyer 𝑗 attaches value 𝑣𝑖𝑗 to house 𝑖.
These values are private

• 𝑣𝑖𝑗 is known only to person 𝑗 unless person 𝑗 chooses to tell someone.
We require that a mechanism allocate at most one house to one prospective buyer.
We describe two distinct mechanisms

• A multiple rounds, ascending bid auction
• A special case of a Groves-Clarke [Groves, 1973], [Clarke, 1971] mechanism with a benevolent social planner

Note: In 1994, the multiple rounds, ascending bid auction was actually used by Stanford University to sell leases to 9
lots on the Stanford campus to eligible faculty members.

We begin with overviews of the two mechanisms.

7.2 Ascending Bids Auction for Multiple Goods

An auction is administered by an auctioneer
The auctioneer has an 𝑛 × 1 vector 𝑟 of reservation prices on the 𝑛 houses.
The auctioneer sells house 𝑖 only if the final price bid for it exceeds 𝑟𝑖

The auctioneer allocates all 𝑛 houses simultaneously
The auctioneer does not know bidders’ private values 𝑣𝑖𝑗

There are multiple rounds

101

Equilibrium Models

• during each round, active participants can submit bids on any of the 𝑛 houses
• each bidder can bid on only one house during one round
• a person who was high bidder on a particular house in one round is understood to submit that same bid for the same
house in the next round

• between rounds, a bidder who was not a high bidder can change the house on which he/she chooses to bid
• the auction ends when the price of no house changes from one round to the next
• all 𝑛 houses are allocated after the final round
• house 𝑖 is retained by the auctioneer if not prospective buyer offers more that 𝑟𝑖 for the house

In this auction, person 𝑗 never tells anyone else his/her private values 𝑣𝑖𝑗

7.3 A Benevolent Planner

This mechanism is designed so that all prospective buyers voluntarily choose to reveal their private values to a social
planner who uses them to construct a socially optimal allocation.
Among all feasible allocations, a socially optimal allocation maximizes the sum of private values across all prospective
buyers.
The planner tells everyone in advance how he/she will allocate houses based on the matrix of values that prospective
buyers report.
The mechanism provide every prospective buyer an incentive to reveal his vector of private values to the planner.
After the planner receives everyone’s vector of private values, the planner deploys a sequential algorithm to determine
an allocation of houses and a set of fees that he charges awardees for the negative externality that their presence impose
on other prospective buyers.

7.4 Equivalence of Allocations

Remarkably, these two mechanisms can produce virtually identical allocations.
We construct Python code for both mechanism.
We also work out some examples by hand or almost by hand.
Next, let’s dive down into the details.

7.5 Ascending Bid Auction

7.5.1 Basic Setting

We start with a more detailed description of the setting.
• A seller owns 𝑛 houses that he wants to sell for the maximum possible amounts to a set of 𝑚 prospective eligible
buyers.

• The seller wants to sell at most one house to each potential buyer.
• There are 𝑚 potential eligible buyers, identified by 𝑗 = [1, 2, … , 𝑚]

102 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

– Each potential buyer is permitted to buy at most one house.
– Buyer 𝑗 would be willing to pay at most 𝑣𝑖𝑗 for house 𝑖.
– Buyer 𝑗 knows 𝑣𝑖𝑗, 𝑖 = 1, … , 𝑛, but no one else does.
– If buyer 𝑗 pays 𝑝𝑖 for house 𝑖, he enjoys surplus value 𝑣𝑖𝑗 − 𝑝𝑖.
– Each buyer 𝑗 wants to choose the 𝑖 that maximizes his/her surplus value 𝑣𝑖𝑗 − 𝑝𝑖.
– The seller wants to maximize ∑𝑖 𝑝𝑖.

The seller conducts a simultaneous, multiple goods, ascending bid auction.
Outcomes of the auction are

• An 𝑛 × 1 vector 𝑝 of sales prices 𝑝 = [𝑝1, … , 𝑝𝑛] for the 𝑛 houses.
• An 𝑛 × 𝑚 matrix 𝑄 of 0’s and 1’s, where 𝑄𝑖𝑗 = 1 if and only if person 𝑗 bought house 𝑖.
• An 𝑛 × 𝑚 matrix 𝑆 of surplus values consisting of all zeros unless person 𝑗 bought house 𝑖, in which case 𝑆𝑖𝑗 =

𝑣𝑖𝑗 − 𝑝𝑖

We describe rules for the auction it terms of pseudo code.
The pseudo code will provide a road map for writing Python code to implement the auction.

7.6 Pseudocode

Here is a quick sketch of a possible simple structure for our Python code
Inputs:

• 𝑛, 𝑚.
• an 𝑛 × 𝑚 non-negative matrix 𝑣 of private values
• an 𝑛 × 1 vector 𝑟 of seller-specified reservation prices
• the seller will not accept a price less than 𝑟𝑖 for house 𝑖
• we are free to think of these reservation prices as private values of a fictitious 𝑚 + 1 th buyer who does not actually
participate in the auction

• initial bids can be thought of starting at 𝑟
• a scalar 𝜖 of seller-specified minimum price-bid increments

For each round of the auction, new bids on a house must be at least the prevailing highest bid so far plus 𝜖
Auction Protocols

• the auction consists of a finite number of rounds
• in each round, a prospective buyer can bid on one and only one house
• after each round, a house is temporarily awarded to the person who made the highest bid for that house

– temporarily winning bids on each house are announced
– this sets the stage to move on to the next round

• a new round is held
– bids for temporary winners from the previous round are again attached to the houses on which they bid;
temporary winners of the last round leave their bids from the previous round unchanged

7.6. Pseudocode 103

Equilibrium Models

– all other active prospective buyers must submit a new bid on some house
– new bids on a house must be at least equal to the prevailing temporary price that won the last round plus 𝜖
– if a person does not submit a new bid and was also not a temporary winner from the previous round, that
person must drop out of the auction permanently

– for each house, the highest bid, whether it is a new bid or was the temporary winner from the previous round,
is announced, with the person who made that new (temporarily) winning bid being (temporarily) awarded the
house to start the next round

• rounds continue until no price on any house changes from the previous round
• houses are sold to the winning bidders from the final round at the prices that they bid

Outputs:
• an 𝑛 × 1 vector 𝑝 of sales prices
• an 𝑛 × 𝑚 matrix 𝑆 of surplus values consisting of all zeros unless person 𝑗 bought house 𝑖, in which case 𝑆𝑖𝑗 =

𝑣𝑖𝑗 − 𝑝𝑖

• an 𝑛 × (𝑚 + 1) matrix 𝑄 of 0’s and 1’s that tells which buyer bought which house. (The last column accounts for
unsold houses.)

Proposed buyer strategy:
In this pseudo code and the actual Python code below, we’ll assume that all buyers choose to use the following strategy

• The strategy is optimal for each buyer
Each buyer 𝑗 = 1, … , 𝑚 uses the same strategy.
The strategy has the form:

• Let ̌𝑝𝑡 be the 𝑛 × 1 vector of prevailing highest-bid prices at the beginning of round 𝑡
• Let 𝜖 > 0 be the minimum bid increment specified by the seller
• For each prospective buyer 𝑗, compute the index of the best house to bid on during round 𝑡, namely ̂𝑖𝑡 =
argmax𝑖{[𝑣𝑖𝑗 − ̌𝑝𝑡

𝑖 − 𝜖]}
• If max𝑖{[𝑣𝑖𝑗 − ̌𝑝𝑡

𝑖 − 𝜖]} ≤ 0, person 𝑗 permanently drops out of the auction at round 𝑡
• If 𝑣 ̂𝑖𝑡,𝑗 − ̌𝑝𝑡

𝑖 − 𝜖 > 0, person 𝑗 bids ̌𝑝𝑡
𝑖 + 𝜖 on house 𝑗

Resolving ambiguities: The protocols we have described so far leave open two possible sources of ambiguity.
(1) The optimal bid choice for buyers in each round. It is possible that a buyer has the same surplus value for multiple
houses. The argmax function in Python always returns the first argmax element. We instead prefer to randomize among
such winner. For that reason, we write our own argmax function below.
(2) Seller’s choice of winner if same price bid cast by several buyers. To resolve this ambiguity, we use the
np.random.choice function below.
Given the randomness in outcomes, it is possible that different allocations of houses could emerge from the same inputs.
However, this will happen only when the bid price increment 𝜖 is nonnegligible.

import numpy as np
import prettytable as pt

np.random.seed(100)

np.set_printoptions(precision=3, suppress=True)

104 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

7.7 An Example

Before building a Python class, let’s step by step solve things almost “by hand” to grasp how the auction proceeds.
A step-by-step procedure also helps reduce bugs, especially when the value matrix is peculiar (e.g. the differences between
values are negligible, a column containing identical values or multiple buyers have the same valuation etc.).
Fortunately, our auction behaves well and robustly with various peculiar matrices.
We provide some examples later in this lecture.

v = np.array([[8, 5, 9, 4],
[4, 11, 7, 4],
[9, 7, 6, 4]])

n, m = v.shape
r = np.array([2, 1, 0])
ϵ = 1
p = r.copy()
buyer_list = np.arange(m)
house_list = np.arange(n)

v

array([[8, 5, 9, 4],
[4, 11, 7, 4],
[9, 7, 6, 4]])

Remember that column indexes 𝑗 indicate buyers and row indexes 𝑖 indicate houses.
The above value matrix 𝑣 is peculiar in the sense that Buyer 3 (indexed from 0) puts the same value 4 on every house
being sold.
Maybe buyer 3 is a bureaucrat who purchases these house simply by following instructions from his superior.

r

array([2, 1, 0])

def find_argmax_with_randomness(v):
"""
We build our own verion of argmax function such that the argmax index will be␣

↪returned randomly
when there are multiple maximum values. This function is similiar to np.argmax(v,

↪axis=0)

Parameters:

v: 2 dimensional np.array

"""

n, m = v.shape
index_array = np.arange(n)
result=[]

(continues on next page)

7.7. An Example 105

Equilibrium Models

(continued from previous page)

for ii in range(m):
max_value = v[:,ii].max()
result.append(np.random.choice(index_array[v[:,ii] == max_value]))

return np.array(result)

def present_dict(dt):
"""
A function that present the information in table.

Parameters:

dt: dictionary.

"""

ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *dt.keys()]
ymtb.add_row(['Buyer', *dt.values()])
print(ymtb)

Check Kick Off Condition

def check_kick_off_condition(v, r, ϵ):
"""
A function that checks whether the auction could be initiated given the␣

↪reservation price and value matrix.
To avoid the situation that the reservation prices are so high that no one would␣

↪even bid in the first round.

Parameters:

v : value matrix of the shape (n,m).

r: the reservation price

ϵ: the minimun price increment in each round

"""

we convert the price vector to a matrix in the same shape as value matrix to␣
↪facilitate subtraction

p_start = (ϵ+r)[:,None] @ np.ones(m)[None,:]

surplus_value = v - p_start
buyer_decision = (surplus_value > 0).any(axis = 0)
return buyer_decision.any()

check_kick_off_condition(v, r, ϵ)

True

106 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

7.7.1 round 1

submit bid

def submit_initial_bid(p_initial, ϵ, v):
"""
A function that describes the bid information in the first round.

Parameters:

p_initial: the price (or the reservation prices) at the beginning of auction.

v: the value matrix

ϵ: the minimun price increment in each round

Returns:

p: price array after this round of bidding

bid_info: a dictionary that contains bidding information (house number as keys␣
↪and buyer as values).

"""

p = p_initial.copy()
p_start_mat = (ϵ + p)[:,None] @ np.ones(m)[None,:]
surplus_value = v - p_start_mat

we only care about active buyers who have positve surplus values
active_buyer_diagnosis = (surplus_value > 0).any(axis = 0)
active_buyer_list = buyer_list[active_buyer_diagnosis]
active_buyer_surplus_value = surplus_value[:,active_buyer_diagnosis]
active_buyer_choice = find_argmax_with_randomness(active_buyer_surplus_value)
choice means the favourite houses given the current price and ϵ

we only retain the unique house index because prices increase once at one round
house_bid = list(set(active_buyer_choice))
p[house_bid] += ϵ

bid_info = {}
for house_num in house_bid:

bid_info[house_num] = active_buyer_list[active_buyer_choice == house_num]

return p, bid_info

p, bid_info = submit_initial_bid(p, ϵ, v)

p

array([3, 2, 1])

present_dict(bid_info)

7.7. An Example 107

Equilibrium Models

+--------------+-----+-----+-------+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-------+
| Buyer | [2] | [1] | [0 3] |
+--------------+-----+-----+-------+

check terminal condition
Notice that two buyers bid for house 2 (indexed from 0).
Because the auction protocol does not specify a selection rule in this case, we simply select a winner randomly.
This is reasonable because the seller can’t distinguish these buyers and doesn’t know the valuation of each buyer.
It is both convenient and practical for him to just pick a winner randomly.
There is a 50% probability that Buyer 3 is chosen as the winner for house 2, although he values it less than buyer 0.
In this case, buyer 0 has to bid one more time with a higher price, which crowds out Buyer 3.
Therefore, final price could be 3 or 4, depending on the winner in the last round.

def check_terminal_condition(bid_info, p, v):
"""
A function that checks whether the auction ends.

Recall that the auction ends when either losers have non-positive surplus values␣
↪for each house

or there is no loser (every buyer gets a house).

Parameters:

bid_info: a dictionary that contains bidding information of house numbers (as␣

↪keys) and buyers (as values).

p: np.array. price array of houses

v: value matrix

Returns:

allocation: a dictionary that descirbe how the houses bid are assigned.

winner_list: a list of winners

loser_list: a list of losers

"""

there may be several buyers bidding one house, we choose a winner randomly
winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]

allocation = {house_num:winner for house_num,winner in zip(bid_info.keys(),winner_
↪list)}

loser_set = set(buyer_list).difference(set(winner_list))
loser_list = list(loser_set)
loser_num = len(loser_list)

(continues on next page)

108 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

if loser_num == 0:
print('The auction ends because every buyer gets one house.')
return allocation,winner_list,loser_list

p_mat = (ϵ + p)[:,None] @ np.ones(loser_num)[None,:]
loser_surplus_value = v[:,loser_list] - p_mat
loser_decision = (loser_surplus_value > 0).any(axis = 0)

print(~(loser_decision.any()))

return allocation,winner_list,loser_list

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 0 |
+--------------+---+---+---+

winner_list

[2, 1, 0]

loser_list

[3]

7.7.2 round 2

From the second round on, the auction proceeds differently from the first round.
Now only active losers (those who have positive surplus values) have an incentive to submit bids to displace temporary
winners from the previous round.

def submit_bid(loser_list, p, ϵ, v, bid_info):
"""
A function that executes the bid operation after the first round.
After the first round, only active losers would cast a new bid with price as old␣

↪price + increment.
By such bid, winners of last round are replaced by the active losers.

Parameters:

(continues on next page)

7.7. An Example 109

Equilibrium Models

(continued from previous page)

loser_list: a list that includes the indexes of losers

p: np.array. price array of houses

ϵ: minimum increment of bid price

v: value matrix

bid_info: a dictionary that contains bidding information of house numbers (as␣
↪keys) and buyers (as values).

Returns:

p_end: a price array after this round of bidding

bid_info: a dictionary that contains updated bidding information.

"""

p_end=p.copy()

loser_num = len(loser_list)
p_mat = (ϵ + p_end)[:,None] @ np.ones(loser_num)[None,:]
loser_surplus_value = v[:,loser_list] - p_mat
loser_decision = (loser_surplus_value > 0).any(axis = 0)

active_loser_list = np.array(loser_list)[loser_decision]
active_loser_surplus_value = loser_surplus_value[:,loser_decision]
active_loser_choice = find_argmax_with_randomness(active_loser_surplus_value)

we retain the unique house index and increasing the corresponding bid price
house_bid = list(set(active_loser_choice))
p_end[house_bid] += ϵ

we record the bidding information from active losers
bid_info_active_loser = {}
for house_num in house_bid:

bid_info_active_loser[house_num] = active_loser_list[active_loser_choice ==␣
↪house_num]

we update the bidding information according to the bidding from actice losers
for house_num in bid_info_active_loser.keys():

bid_info[house_num] = bid_info_active_loser[house_num]

return p_end,bid_info

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 2, 2])

present_dict(bid_info)

110 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [3] |
+--------------+-----+-----+-----+

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 3 |
+--------------+---+---+---+

7.7.3 round 3

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 2, 3])

present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 0 |
+--------------+---+---+---+

7.7. An Example 111

Equilibrium Models

7.7.4 round 4

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 3, 3])

present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [3] | [0] |
+--------------+-----+-----+-----+

Notice that Buyer 3 now switches to bid for house 1 having recongized that house 2 is no longer his best option.

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 3 | 0 |
+--------------+---+---+---+

7.7.5 round 5

p,bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 4, 3])

present_dict(bid_info)

+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+

112 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

Now Buyer 1 bids for house 1 again with price at 4, which crowds out Buyer 3, marking the end of the auction.

allocation,winner_list,loser_list = check_terminal_condition(bid_info, p, v)

True

present_dict(allocation)

+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer | 2 | 1 | 0 |
+--------------+---+---+---+

as for the houses unsold

house_unsold_list = list(set(house_list).difference(set(allocation.keys())))
house_unsold_list

[]

total_revenue = p[list(allocation.keys())].sum()
total_revenue

10

7.8 A Python Class

Above we simulated an ascending bid auction step by step.
When defining functions, we repeatedly computed some intermediate objects because our Python function loses track of
variables once the function is executed.
That of course led to redundancy in our code
It is much more efficient to collect all of the aforementioned code into a class that records information about all rounds.

class ascending_bid_auction:

def __init__(self, v, r, ϵ):
"""
A class that simulates an ascending bid auction for houses.

Given buyers' value matrix, sellers' reservation prices and minimum increment␣
↪of bid prices,

this class can execute an ascending bid auction and present information round␣
↪by round until the end.

Parameters:

(continues on next page)

7.8. A Python Class 113

Equilibrium Models

(continued from previous page)

v: 2 dimensional value matrix

r: np.array of reservation prices

ϵ: minimum increment of bid price

"""

self.v = v.copy()
self.n,self.m = self.v.shape
self.r = r
self.ϵ = ϵ
self.p = r.copy()
self.buyer_list = np.arange(self.m)
self.house_list = np.arange(self.n)
self.bid_info_history = []
self.allocation_history = []
self.winner_history = []
self.loser_history = []

def find_argmax_with_randomness(self, v):
n,m = v.shape
index_array = np.arange(n)
result=[]

for ii in range(m):
max_value = v[:,ii].max()
result.append(np.random.choice(index_array[v[:,ii] == max_value]))

return np.array(result)

def check_kick_off_condition(self):
we convert the price vector to a matrix in the same shape as value matrix␣

↪to facilitate subtraction
p_start = (self.ϵ + self.r)[:,None] @ np.ones(self.m)[None,:]
self.surplus_value = self.v - p_start
buyer_decision = (self.surplus_value > 0).any(axis = 0)
return buyer_decision.any()

def submit_initial_bid(self):
we intend to find the optimal choice of each buyer
p_start_mat = (self.ϵ + self.p)[:,None] @ np.ones(self.m)[None,:]
self.surplus_value = self.v - p_start_mat

we only care about active buyers who have positve surplus values
active_buyer_diagnosis = (self.surplus_value > 0).any(axis = 0)
active_buyer_list = self.buyer_list[active_buyer_diagnosis]
active_buyer_surplus_value = self.surplus_value[:,active_buyer_diagnosis]
active_buyer_choice = self.find_argmax_with_randomness(active_buyer_surplus_

↪value)

we only retain the unique house index because prices increase once at one␣
↪round

(continues on next page)

114 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

house_bid = list(set(active_buyer_choice))
self.p[house_bid] += self.ϵ

bid_info = {}
for house_num in house_bid:

bid_info[house_num] = active_buyer_list[active_buyer_choice == house_num]
self.bid_info_history.append(bid_info)

print('The bid information is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *bid_info.keys()]
ymtb.add_row(['Buyer', *bid_info.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

self.winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
self.winner_history.append(self.winner_list)

self.allocation = {house_num:[winner] for house_num,winner in zip(bid_info.
↪keys(),self.winner_list)}

self.allocation_history.append(self.allocation)

loser_set = set(self.buyer_list).difference(set(self.winner_list))
self.loser_list = list(loser_set)
self.loser_history.append(self.loser_list)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)
print('\n')

def check_terminal_condition(self):
loser_num = len(self.loser_list)

if loser_num == 0:
print('The auction ends because every buyer gets one house.')
print('\n')
return True

p_mat = (self.ϵ + self.p)[:,None] @ np.ones(loser_num)[None,:]
self.loser_surplus_value = self.v[:,self.loser_list] - p_mat
self.loser_decision = (self.loser_surplus_value > 0).any(axis = 0)

return ~(self.loser_decision.any())

def submit_bid(self):
bid_info = self.allocation_history[-1].copy() # we only record the bid info␣

↪of winner
(continues on next page)

7.8. A Python Class 115

Equilibrium Models

(continued from previous page)

loser_num = len(self.loser_list)
p_mat = (self.ϵ + self.p)[:,None] @ np.ones(loser_num)[None,:]
self.loser_surplus_value = self.v[:,self.loser_list] - p_mat
self.loser_decision = (self.loser_surplus_value > 0).any(axis = 0)

active_loser_list = np.array(self.loser_list)[self.loser_decision]
active_loser_surplus_value = self.loser_surplus_value[:,self.loser_decision]
active_loser_choice = self.find_argmax_with_randomness(active_loser_surplus_

↪value)

we retain the unique house index and increasing the corresponding bid price
house_bid = list(set(active_loser_choice))
self.p[house_bid] += self.ϵ

we record the bidding information from active losers
bid_info_active_loser = {}
for house_num in house_bid:

bid_info_active_loser[house_num] = active_loser_list[active_loser_choice␣
↪== house_num]

we update the bidding information according to the bidding from actice␣
↪losers

for house_num in bid_info_active_loser.keys():
bid_info[house_num] = bid_info_active_loser[house_num]

self.bid_info_history.append(bid_info)

print('The bid information is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *bid_info.keys()]
ymtb.add_row(['Buyer', *bid_info.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

self.winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
self.winner_history.append(self.winner_list)

self.allocation = {house_num:[winner] for house_num,winner in zip(bid_info.
↪keys(),self.winner_list)}

self.allocation_history.append(self.allocation)

loser_set = set(self.buyer_list).difference(set(self.winner_list))
self.loser_list = list(loser_set)
self.loser_history.append(self.loser_list)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)
print('\n')

(continues on next page)

116 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

def start_auction(self):
print('The Ascending Bid Auction for Houses')
print('\n')

print('Basic Information: %d houses, %d buyers'%(self.n, self.m))

print('The valuation matrix is as follows')
ymtb = pt.PrettyTable()
ymtb.field_names = ['Buyer Number', *(np.arange(self.m))]
for ii in range(self.n):

ymtb.add_row(['House %d'%(ii), *self.v[ii,:]])
print(ymtb)

print('The reservation prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.r])
print(ymtb)
print('The minimum increment of bid price is %.2f' % self.ϵ)
print('\n')

ctr = 1
if self.check_kick_off_condition():

print('Auction starts successfully')
print('\n')
print('Round %d'% ctr)

self.submit_initial_bid()

while True:
if self.check_terminal_condition():

print('Auction ends')
print('\n')

print('The final result is as follows')
print('\n')
print('The allocation plan is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.allocation.keys()]
ymtb.add_row(['Buyer', *self.allocation.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)

(continues on next page)

7.8. A Python Class 117

Equilibrium Models

(continued from previous page)

self.house_unsold_list = list(set(self.house_list).
↪difference(set(self.allocation.keys())))

print('The houses unsold are')
print(self.house_unsold_list)

self.total_revenue = self.p[list(self.allocation.keys())].sum()
print('The total revenue is %.2f' % self.total_revenue)

break

ctr += 1
print('Round %d'% ctr)
self.submit_bid()

we compute the surplus matrix S and the quantity matrix X as required␣
↪in 1.1

self.S = np.zeros((self.n, self.m))
for ii,jj in zip(self.allocation.keys(),self.allocation.values()):

self.S[ii,jj] = self.v[ii,jj] - self.p[ii]

self.Q = np.zeros((self.n, self.m + 1)) # the last column records the␣
↪houses unsold

for ii,jj in zip(self.allocation.keys(),self.allocation.values()):
self.Q[ii,jj] = 1

for ii in self.house_unsold_list:
self.Q[ii,-1] = 1

we sort the allocation result by the house number
house_sold_list = list(self.allocation.keys())
house_sold_list.sort()

dict_temp = {}
for ii in house_sold_list:

dict_temp[ii] = self.allocation[ii]
self.allocation = dict_temp

else:
print('The auction can not start because of high reservation prices')

Let’s use our class to conduct the auction described in one of the above examples.

v = np.array([[8,5,9,4],[4,11,7,4],[9,7,6,4]])
r = np.array([2,1,0])
ϵ = 1

auction_1 = ascending_bid_auction(v, r, ϵ)

auction_1.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 4 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+

(continues on next page)

118 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

| Buyer Number | 0 | 1 | 2 | 3 |
+--------------+---+----+---+---+
House 0	8	5	9	4
House 1	4	11	7	4
House 2	9	7	6	4
+--------------+---+----+---+---+				
The reservation prices for houses are				
+--------------+---+---+---+				
House Number	0	1	2	
+--------------+---+---+---+				
Price	2	1	0	
+--------------+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-----+-------+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-------+
| Buyer | [2] | [1] | [0 3] |
+--------------+-----+-----+-------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3]

Round 2
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [3] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 2 |
+--------------+---+---+---+
The winners are
[2, 1, 3]
The losers are
[0]

(continues on next page)

7.8. A Python Class 119

Equilibrium Models

(continued from previous page)

Round 3
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 3 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3]

Round 4
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [3] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 3 | 3 |
+--------------+---+---+---+
The winners are
[2, 3, 0]
The losers are
[1]

Round 5
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3]

(continues on next page)

120 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3]
The houses unsold are
[]
The total revenue is 10.00

the surplus matrix S

auction_1.S

array([[0., 0., 6., 0.],
[0., 7., 0., 0.],
[6., 0., 0., 0.]])

the quantity matrix X

auction_1.Q

array([[0., 0., 1., 0., 0.],
[0., 1., 0., 0., 0.],
[1., 0., 0., 0., 0.]])

7.8. A Python Class 121

Equilibrium Models

7.9 Robustness Checks

Let’s do some stress testing of our code by applying it to auctions characterized by different matrices of private values.
1. number of houses = number of buyers

v2 = np.array([[8,5,9],[4,11,7],[9,7,6]])

auction_2 = ascending_bid_auction(v2, r, ϵ)

auction_2.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 3 buyers
The valuation matrix is as follows
+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
House 0	8	5	9
House 1	4	11	7
House 2	9	7	6
+--------------+---+----+---+			
The reservation prices for houses are			
+--------------+---+---+---+			
House Number	0	1	2
+--------------+---+---+---+			
Price	2	1	0
+--------------+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[]

The auction ends because every buyer gets one house.

(continues on next page)

122 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[]
The houses unsold are
[]
The total revenue is 6.00

2. multilple excess buyers

v3 = np.array([[8,5,9,4,3],[4,11,7,4,6],[9,7,6,4,2]])

auction_3 = ascending_bid_auction(v3, r, ϵ)

auction_3.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 5 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+---+
| Buyer Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+----+---+---+---+
House 0	8	5	9	4	3
House 1	4	11	7	4	6
House 2	9	7	6	4	2
+--------------+---+----+---+---+---+					
The reservation prices for houses are					
+--------------+---+---+---+					
House Number	0	1	2		
+--------------+---+---+---+					
Price	2	1	0		
+--------------+---+---+---+
The minimum increment of bid price is 1.00

(continues on next page)

7.9. Robustness Checks 123

Equilibrium Models

(continued from previous page)

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-------+-------+
| House Number | 0 | 1 | 2 |
+--------------+-----+-------+-------+
| Buyer | [2] | [1 4] | [0 3] |
+--------------+-----+-------+-------+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+
The winners are
[2, 4, 3]
The losers are
[0, 1]

Round 2
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 3 | 2 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3, 4]

Round 3
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [4] | [3] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
+--------------+---+---+---+

(continues on next page)

124 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

The winners are
[2, 4, 3]
The losers are
[0, 1]

Round 4
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 5 | 4 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3, 4]

Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 5 | 4 |
+--------------+---+---+---+
The winners are
[2, 1, 0]
The losers are
[3, 4]
The houses unsold are
[]
The total revenue is 12.00

3. more houses than buyers

v4 = np.array([[8,5,4],[4,11,7],[9,7,9],[6,4,5],[2,2,2]])
r2 = np.array([2,1,0,1,1])

(continues on next page)

7.9. Robustness Checks 125

Equilibrium Models

(continued from previous page)

auction_4 = ascending_bid_auction(v4, r2, ϵ)

auction_4.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 5 houses, 3 buyers
The valuation matrix is as follows
+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
House 0	8	5	4
House 1	4	11	7
House 2	9	7	9
House 3	6	4	5
House 4	2	2	2
+--------------+---+----+---+			
The reservation prices for houses are			
+--------------+---+---+---+---+---+			
House Number	0	1	2
+--------------+---+---+---+---+---+			
Price	2	1	0
+--------------+---+---+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-------+
| House Number | 1 | 2 |
+--------------+-----+-------+
| Buyer | [1] | [0 2] |
+--------------+-----+-------+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 1 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 2]
The losers are
[0]

Round 2
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [0] |

(continues on next page)

126 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

+--------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 2 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 3
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [2] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 3 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 2]
The losers are
[0]

Round 4
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 2 | 4 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 5
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+

(continues on next page)

7.9. Robustness Checks 127

Equilibrium Models

(continued from previous page)

| Buyer | [2] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 3 | 4 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[2, 0]
The losers are
[1]

Round 6
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 4 | 4 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 7
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [2] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 2 | 4 | 5 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 2]
The losers are
[0]

Round 8
The bid information is
+--------------+-----+-----+-----+
| House Number | 1 | 2 | 0 |

(continues on next page)

128 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

+--------------+-----+-----+-----+
| Buyer | [1] | [2] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 3 | 4 | 5 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 2, 0]
The losers are
[]

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 1 | 2 | 0 |
+--------------+-----+-----+-----+
| Buyer | [1] | [2] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 3 | 4 | 5 | 1 | 1 |
+--------------+---+---+---+---+---+
The winners are
[1, 2, 0]
The losers are
[]
The houses unsold are
[3, 4]
The total revenue is 12.00

4. some houses have extremely high reservation prices

v5 = np.array([[8,5,4],[4,11,7],[9,7,9],[6,4,5],[2,2,2]])
r3 = np.array([10,1,0,1,1])

auction_5 = ascending_bid_auction(v5, r3, ϵ)

auction_5.start_auction()

The Ascending Bid Auction for Houses

(continues on next page)

7.9. Robustness Checks 129

Equilibrium Models

(continued from previous page)

Basic Information: 5 houses, 3 buyers
The valuation matrix is as follows
+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
House 0	8	5	4
House 1	4	11	7
House 2	9	7	9
House 3	6	4	5
House 4	2	2	2
+--------------+---+----+---+			
The reservation prices for houses are			
+--------------+----+---+---+---+---+			
House Number	0	1	2
+--------------+----+---+---+---+---+			
Price	10	1	0
+--------------+----+---+---+---+---+
The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-------+
| House Number | 1 | 2 |
+--------------+-----+-------+
| Buyer | [1] | [0 2] |
+--------------+-----+-------+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 1 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 2
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [2] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 2 | 1 | 1 |
+--------------+----+---+---+---+---+

(continues on next page)

130 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

The winners are
[1, 2]
The losers are
[0]

Round 3
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 3 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 4
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [2] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 4 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 2]
The losers are
[0]

Round 5
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 2 | 5 | 1 | 1 |

(continues on next page)

7.9. Robustness Checks 131

Equilibrium Models

(continued from previous page)

+--------------+----+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 6
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [2] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 3 | 5 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[2, 0]
The losers are
[1]

Round 7
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [0] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 5 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 8
The bid information is
+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [2] |
+--------------+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+

(continues on next page)

132 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

| Price | 10 | 4 | 6 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 2]
The losers are
[0]

Round 9
The bid information is
+--------------+-----+-----+-----+
| House Number | 1 | 2 | 3 |
+--------------+-----+-----+-----+
| Buyer | [1] | [2] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 6 | 2 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 2, 0]
The losers are
[]

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 1 | 2 | 3 |
+--------------+-----+-----+-----+
| Buyer | [1] | [2] | [0] |
+--------------+-----+-----+-----+
The bid prices for houses are
+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10 | 4 | 6 | 2 | 1 |
+--------------+----+---+---+---+---+
The winners are
[1, 2, 0]
The losers are
[]
The houses unsold are
[0, 4]
The total revenue is 12.00

5. reservation prices are so high that the auction can’t start

7.9. Robustness Checks 133

Equilibrium Models

r4 = np.array([15,15,15])

auction_6 = ascending_bid_auction(v, r4, ϵ)

auction_6.start_auction()

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 4 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+
| Buyer Number | 0 | 1 | 2 | 3 |
+--------------+---+----+---+---+
House 0	8	5	9	4
House 1	4	11	7	4
House 2	9	7	6	4
+--------------+---+----+---+---+				
The reservation prices for houses are				
+--------------+----+----+----+				
House Number	0	1	2	
+--------------+----+----+----+				
Price	15	15	15	
+--------------+----+----+----+
The minimum increment of bid price is 1.00

The auction can not start because of high reservation prices

7.10 A Groves-Clarke Mechanism

We now decribe an alternative way for society to allocate 𝑛 houses to 𝑚 possible buyers in a way that maximizes total
value across all potential buyers.
We continue to assume that each buyer can purchase at most one house.
The mechanism is a very special case of a Groves-Clarke mechanism [Groves, 1973], [Clarke, 1971].
Its special structure substantially simplifies writing Python code to find an optimal allocation.
Our mechanims works like this.

• The values 𝑉𝑖𝑗 are private information to person 𝑗
• The mechanism makes each person 𝑗 willing to tell a social planner his private values 𝑉𝑖,𝑗 for all 𝑖 = 1, … , 𝑛.
• The social planner asks all potential bidders to tell the planner their private values 𝑉𝑖𝑗

• The social planner tells no one these, but uses them to allocate houses and set prices
• The mechanism is designed in a way that makes all prospective buyers want to tell the planner their private values

– truth telling is a dominant strategy for each potential buyer
• The planner finds a house, bidder pair with highest private value by computing (̃𝑖, ̃𝑗) = argmax(𝑉𝑖𝑗)

• The planner assigns house ̃𝑖 to buyer ̃𝑗
• The planner charges buyer ̃𝑗 the price max− ̃𝑗 𝑉 ̃𝑖,𝑗, where − ̃𝑗 means all 𝑗’s except ̃𝑗.

134 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

• The planner creates a matrix of private values for the remaining houses − ̃𝑖 by deleting row (i.e., house) ̃𝑖 and
column (i.e., buyer) ̃𝑗 from 𝑉 .
– (But in doing this, the planner keeps track of the real names of the bidders and the houses).

• The planner returns to the original step and repeat it.
• The planner iterates until all 𝑛 houses are allocated and the charges for all 𝑛 houses are set.

7.11 An Example Solved by Hand

Let’s see how our Groves-Clarke algorithm would work for the following simple matrix 𝑉 matrix of private values

𝑉 =
⎡
⎢⎢
⎣

10 9 8 7 6
9 9 7 6 6
8 6 6 9 4
7 5 6 4 9

⎤
⎥⎥
⎦

Remark: In the first step, when the highest private value corresponds to more than one house, bidder pairs, we choose
the pair with the highest sale price. If a highest sale price corresponds to two or more pairs with highest private values,
we randomly choose one.

np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6], # record the origianl values
[9, 9, 7, 6, 6],
[8, 6, 6, 9, 4],
[7, 5, 6, 4, 9]])

V = np.copy(V_orig) # used iteratively
n, m = V.shape
p = np.zeros(n) # prices of houses
Q = np.zeros((n, m)) # keep record the status of houses and buyers

First assignment
First, we find house, bidder pair with highest private value.

i, j = np.where(V==np.max(V))
i, j

(array([0]), array([0]))

So, house 0 will be sold to buyer 0 at a price of 9. We then update the sale price of house 0 and the status matrix Q.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
p, Q

(array([9., 0., 0., 0.]),
array([[1., 0., 0., 0., 0.],

[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]))

7.11. An Example Solved by Hand 135

Equilibrium Models

Then we remove row 0 and column 0 from 𝑉 . To keep the real number of houses and buyers, we set this row and this
column to -1, which will have the same result as removing them since 𝑉 ≥ 0.

V[i, :] = -1
V[:, j] = -1
V

array([[-1, -1, -1, -1, -1],
[-1, 9, 7, 6, 6],
[-1, 6, 6, 9, 4],
[-1, 5, 6, 4, 9]])

Second assignment
We find house, bidder pair with the highest private value again.

i, j = np.where(V==np.max(V))
i, j

(array([1, 2, 3]), array([1, 3, 4]))

In this special example, there are three pairs (1, 1), (2, 3) and (3, 4) with the highest private value. To solve this problem,
we choose the one with highest sale price.

p_candidate = np.zeros(len(i))
for k in range(len(i)):

p_candidate[k] = np.max(np.delete(V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]
i, j

(array([1]), array([1]))

So, house 1 will be sold to buyer 1 at a price of 7. We update matrices.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
p, Q, V

(array([9., 7., 0., 0.]),
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]),

array([[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, 6, 9, 4],
[-1, -1, 6, 4, 9]]))

Third assignment

136 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

i, j = np.where(V==np.max(V))
i, j

(array([2, 3]), array([3, 4]))

In this special example, there are two pairs (2, 3) and (3, 4) with the highest private value.
To resolve the assignment, we choose the one with highest sale price.

p_candidate = np.zeros(len(i))
for k in range(len(i)):

p_candidate[k] = np.max(np.delete(V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]
i, j

(array([2, 3]), array([3, 4]))

The two pairs even have the same sale price.
We randomly choose one pair.

k = np.random.choice(len(i))
i, j = i[k], j[k]
i, j

(2, 3)

Finally, house 2 will be sold to buyer 3.
We update matrices accordingly.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
p, Q, V

(array([9., 7., 6., 0.]),
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0.]]),

array([[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, 6, -1, 9]]))

Fourth assignment

i, j = np.where(V==np.max(V))
i, j

7.11. An Example Solved by Hand 137

Equilibrium Models

(array([3]), array([4]))

House 3 will be sold to buyer 4.
The final outcome follows.

p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
S = V_orig*Q - np.diag(p)@Q
p, Q, V, S

(array([9., 7., 6., 6.]),
array([[1., 0., 0., 0., 0.],

[0., 1., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]]),

array([[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1]]),

array([[1., 0., 0., 0., 0.],
[0., 2., 0., 0., 0.],
[0., 0., 0., 3., 0.],
[0., 0., 0., 0., 3.]]))

7.12 Another Python Class

It is efficient to assemble our calculations in a single Python Class.

class GC_Mechanism:

def __init__(self, V):
"""
Implementation of the special Groves Clarke Mechanism for house auction.

Parameters:

V: 2 dimensional private value matrix

"""

self.V_orig = V.copy()
self.V = V.copy()
self.n, self.m = self.V.shape
self.p = np.zeros(self.n)
self.Q = np.zeros((self.n, self.m))
self.S = np.copy(self.Q)

def find_argmax(self):
"""
Find the house-buyer pair with the highest value.

(continues on next page)

138 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

(continued from previous page)

When the highest private value corresponds to more than one house, bidder␣
↪pairs,

we choose the pair with the highest sale price.
Moreoever, if the highest sale price corresponds to two or more pairs with␣

↪highest private value,
We randomly choose one.

Parameters:

V: 2 dimensional private value matrix with -1 indicating revomed rows and␣

↪columns

Returns:

i: the index of the sold house

j: the index of the buyer

"""
i, j = np.where(self.V==np.max(self.V))

if (len(i)>1):
p_candidate = np.zeros(len(i))
for k in range(len(i)):

p_candidate[k] = np.max(np.delete(self.V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]

if (len(i)>1):
k = np.random.choice(len(i))
k = np.array([k])
i, j = i[k], j[k]

return i, j

def update_status(self, i, j):
self.p[i] = np.max(np.delete(self.V[i, :], j))
self.Q[i, j] = 1
self.V[i, :] = -1
self.V[:, j] = -1

def calculate_surplus(self):
self.S = self.V_orig*self.Q - np.diag(self.p)@self.Q

def start(self):
while (np.max(self.V)>=0):

i, j = self.find_argmax()
self.update_status(i, j)
print("House %i is sold to buyer %i at price %i"%(i[0], j[0], self.

↪p[i[0]]))
print("\n")

self.calculate_surplus()
print("Prices of house:\n", self.p)
print("\n")
print("The status matrix:\n", self.Q)
print("\n")
print("The surplus matrix:\n", self.S)

7.12. Another Python Class 139

Equilibrium Models

np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6],
[9, 9, 7, 6, 6],
[8, 6, 6, 9, 4],
[7, 5, 6, 4, 9]])

gc_mechanism = GC_Mechanism(V_orig)
gc_mechanism.start()

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 7

House 2 is sold to buyer 3 at price 6

House 3 is sold to buyer 4 at price 6

Prices of house:
[9. 7. 6. 6.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0.]
[0. 0. 0. 0. 1.]]

The surplus matrix:
[[1. 0. 0. 0. 0.]
[0. 2. 0. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 3.]]

7.12.1 Elaborations

Here we use some additional notation designed to conform with standard notation in parts of the VCG literature.
We want to verify that our pseudo code is indeed a pivot mechanism, also called a VCG (Vickrey-Clarke-Groves)
mechanism.

• The mechanism is named after [Groves, 1973], [Clarke, 1971], and [Vickrey, 1961].
To prepare for verifying this, we add some notation.
Let 𝑋 be the set of feasible allocations of houses under the protocols above (i.e., at most one house to each person).
Let 𝑋(𝑣) be the allocation that the mechanism chooses for matrix 𝑣 of private values.
The mechanism maps a matrix 𝑣 of private values into an 𝑥 ∈ 𝑋.
Let 𝑣𝑗(𝑥) be the value that person 𝑗 attaches to allocation 𝑥 ∈ 𝑋.

Let ̌𝑡𝑗(𝑣) the payment that the mechanism charges person 𝑗.

140 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

The VCG mechanism chooses the allocation

𝑋(𝑣) = argmax𝑥∈𝑋

𝑚
∑
𝑗=1

𝑣𝑗(𝑥) (7.1)

and charges person 𝑗 a “social cost”

̌𝑡𝑗(𝑣) = max
𝑥∈𝑋

∑
𝑘≠𝑗

𝑣𝑘(𝑥) − ∑
𝑘≠𝑗

𝑣𝑘(𝑋(𝑣)) (7.2)

In our setting, equation (7.1) says that the VCG allocation allocates houses to maximize the total value of the successful
prospective buyers.
In our setting, equation (7.2) says that the mechanism charges people for the externality that their presence in society
imposes on other prospective buyers.
Thus, notice that according to equation (7.2):

• unsuccessful prospective buyers pay 0 because removing them from “society” would not affect the allocation chosen
by the mechanim

• successful prospective buyers pay the difference between the total value society could achieve without them present
and the total value that others present in society do achieve under the mechanism.

The generalized second-price auction described in our pseudo code above does indeed satisfy (1). We want to compute
̌𝑡𝑗 for 𝑗 = 1, … , 𝑚 and compare with 𝑝𝑗 from the second price auction.

7.12.2 Social Cost

Using the GC_Mechanism class, we can calculate the social cost of each buyer.
Let’s see a simpler example with private value matrix

𝑉 = ⎡⎢
⎣

10 9 8 7 6
9 8 7 6 6
8 7 6 5 4

⎤⎥
⎦

To begin with, we implement the GC mechanism and see the outcome.

np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6],
[9, 8, 7, 6, 6],
[8, 7, 6, 5, 4]])

gc_mechanism = GC_Mechanism(V_orig)
gc_mechanism.start()

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 7

House 2 is sold to buyer 2 at price 5

Prices of house:

(continues on next page)

7.12. Another Python Class 141

Equilibrium Models

(continued from previous page)

[9. 7. 5.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]]

The surplus matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]]

We exclude buyer 0 and calculate the allocation.

V_exc_0 = np.copy(V_orig)
V_exc_0[:, 0] = -1
V_exc_0
gc_mechanism_exc_0 = GC_Mechanism(V_exc_0)
gc_mechanism_exc_0.start()

House 0 is sold to buyer 1 at price 8

House 1 is sold to buyer 2 at price 6

House 2 is sold to buyer 3 at price 4

Prices of house:
[8. 6. 4.]

The status matrix:
[[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[-0. 1. 0. 0. 0.]
[-0. 0. 1. 0. 0.]
[-0. 0. 0. 1. 0.]]

Calculate the social cost of buyer 0.

print("The social cost of buyer 0:",
np.sum(gc_mechanism_exc_0.Q*gc_mechanism_exc_0.V_orig)-np.sum(np.delete(gc_

↪mechanism.Q*gc_mechanism.V_orig, 0, axis=1)))

The social cost of buyer 0: 7.0

Repeat this process for buyer 1 and buyer 2

142 Chapter 7. Multiple Good Allocation Mechanisms

Equilibrium Models

V_exc_1 = np.copy(V_orig)
V_exc_1[:, 1] = -1
V_exc_1
gc_mechanism_exc_1 = GC_Mechanism(V_exc_1)
gc_mechanism_exc_1.start()

print("\nThe social cost of buyer 1:",
np.sum(gc_mechanism_exc_1.Q*gc_mechanism_exc_1.V_orig)-np.sum(np.delete(gc_

↪mechanism.Q*gc_mechanism.V_orig, 1, axis=1)))

House 0 is sold to buyer 0 at price 8

House 1 is sold to buyer 2 at price 6

House 2 is sold to buyer 3 at price 4

Prices of house:
[8. 6. 4.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[2. -0. 0. 0. 0.]
[0. -0. 1. 0. 0.]
[0. -0. 0. 1. 0.]]

The social cost of buyer 1: 6.0

V_exc_2 = np.copy(V_orig)
V_exc_2[:, 2] = -1
V_exc_2
gc_mechanism_exc_2 = GC_Mechanism(V_exc_2)
gc_mechanism_exc_2.start()

print("\nThe social cost of buyer 2:",
np.sum(gc_mechanism_exc_2.Q*gc_mechanism_exc_2.V_orig)-np.sum(np.delete(gc_

↪mechanism.Q*gc_mechanism.V_orig, 2, axis=1)))

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 6

House 2 is sold to buyer 3 at price 4

(continues on next page)

7.12. Another Python Class 143

Equilibrium Models

(continued from previous page)

Prices of house:
[9. 6. 4.]

The status matrix:
[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[1. 0. -0. 0. 0.]
[0. 2. -0. 0. 0.]
[0. 0. -0. 1. 0.]]

The social cost of buyer 2: 5.0

144 Chapter 7. Multiple Good Allocation Mechanisms

Part III

Rational Expectation Models

145

CHAPTER

EIGHT

CASS-KOOPMANS MODEL

Contents

• Cass-Koopmans Model

– Overview

– The Model

– Planning Problem

– Shooting Algorithm

– Setting Initial Capital to Steady State Capital

– A Turnpike Property

– A Limiting Infinite Horizon Economy

– Concluding Remarks

8.1 Overview

This lecture and Cass-Koopmans Competitive Equilibrium describe a model that Tjalling Koopmans [Koopmans, 1965]
and David Cass [Cass, 1965] used to analyze optimal growth.
The model can be viewed as an extension of the model of Robert Solow described in an earlier lecture but adapted to
make the saving rate be a choice.
(Solow assumed a constant saving rate determined outside the model.)
We describe two versions of the model, one in this lecture and the other in Cass-Koopmans Competitive Equilibrium.
Together, the two lectures illustrate what is, in fact, a more general connection between a planned economy and a
decentralized economy organized as a competitive equilibrium.
This lecture is devoted to the planned economy version.
In the planned economy, there are

• no prices
• no budget constraints

Instead there is a dictator that tells people
• what to produce

147

https://python-programming.quantecon.org/python_oop.html

Equilibrium Models

• what to invest in physical capital
• who is to consume what and when

The lecture uses important ideas including
• A min-max problem for solving a planning problem.
• A shooting algorithm for solving difference equations subject to initial and terminal conditions.
• A turnpike property that describes optimal paths for long but finite-horizon economies.

Let’s start with some standard imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
from numba import njit, float64
from numba.experimental import jitclass
import numpy as np

8.2 The Model

Time is discrete and takes values 𝑡 = 0, 1, … , 𝑇 where 𝑇 is finite.
(We’ll eventually study a limiting case in which 𝑇 = +∞)
A single good can either be consumed or invested in physical capital.
The consumption good is not durable and depreciates completely if not consumed immediately.
The capital good is durable but depreciates.
We let 𝐶𝑡 be the total consumption of a nondurable consumption good at time 𝑡.
Let 𝐾𝑡 be the stock of physical capital at time 𝑡.
Let ⃗𝐶 = {𝐶0, … , 𝐶𝑇 } and �⃗� = {𝐾0, … , 𝐾𝑇 +1}.

8.2.1 Digression: Aggregation Theory

We use a concept of a representative consumer to be thought of as follows.
There is a unit mass of identical consumers indexed by 𝜔 ∈ [0, 1].
Consumption of consumer 𝜔 is 𝑐(𝜔).
Aggregate consumption is

𝐶 = ∫
1

0
𝑐(𝜔)𝑑𝜔

Consider a welfare problem that chooses an allocation {𝑐(𝜔)} across consumers to maximize

∫
1

0
𝑢(𝑐(𝜔))𝑑𝜔

where 𝑢(⋅) is a concave utility function with 𝑢′ > 0, 𝑢″ < 0 and maximization is subject to

𝐶 = ∫
1

0
𝑐(𝜔)𝑑𝜔. (8.1)

148 Chapter 8. Cass-Koopmans Model

Equilibrium Models

Form a Lagrangian 𝐿 = ∫1
0 𝑢(𝑐(𝜔))𝑑𝜔 + 𝜆[𝐶 − ∫1

0 𝑐(𝜔)𝑑𝜔].
Differentiate under the integral signs with respect to each 𝜔 to obtain the first-order necessary conditions

𝑢′(𝑐(𝜔)) = 𝜆.

These conditions imply that 𝑐(𝜔) equals a constant 𝑐 that is independent of 𝜔.
To find 𝑐, use feasibility constraint (8.1) to conclude that

𝑐(𝜔) = 𝑐 = 𝐶.

This line of argument indicates the special aggregation theory that lies beneath outcomes in which a representative con-
sumer consumes amount 𝐶.
It appears often in aggregate economics.
We shall use this aggregation theory here and also in this lecture Cass-Koopmans Competitive Equilibrium.

An Economy

A representative household is endowed with one unit of labor at each 𝑡 and likes the consumption good at each 𝑡.
The representative household inelastically supplies a single unit of labor 𝑁𝑡 at each 𝑡, so that 𝑁𝑡 = 1 for all 𝑡 ∈
{0, 1, … , 𝑇 }.
The representative household has preferences over consumption bundles ordered by the utility functional:

𝑈(⃗𝐶) =
𝑇

∑
𝑡=0

𝛽𝑡 𝐶1−𝛾
𝑡

1 − 𝛾 (8.2)

where 𝛽 ∈ (0, 1) is a discount factor and 𝛾 > 0 governs the curvature of the one-period utility function.
Larger 𝛾’s imply more curvature.
Note that

𝑢(𝐶𝑡) = 𝐶1−𝛾
𝑡

1 − 𝛾 (8.3)

satisfies 𝑢′ > 0, 𝑢″ < 0.
𝑢′ > 0 asserts that the consumer prefers more to less.
𝑢″ < 0 asserts that marginal utility declines with increases in 𝐶𝑡.
We assume that 𝐾0 > 0 is an exogenous initial capital stock.
There is an economy-wide production function

𝐹(𝐾𝑡, 𝑁𝑡) = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

𝑡 (8.4)

with 0 < 𝛼 < 1, 𝐴 > 0.
A feasible allocation ⃗𝐶, �⃗� satisfies

𝐶𝑡 + 𝐾𝑡+1 ≤ 𝐹(𝐾𝑡, 𝑁𝑡) + (1 − 𝛿)𝐾𝑡 for all 𝑡 ∈ {0, 1, … , 𝑇 } (8.5)

where 𝛿 ∈ (0, 1) is a depreciation rate of capital.

8.2. The Model 149

Equilibrium Models

8.3 Planning Problem

A planner chooses an allocation { ⃗𝐶, �⃗�} to maximize (8.2) subject to (8.5).
Let ⃗𝜇 = {𝜇0, … , 𝜇𝑇 } be a sequence of nonnegative Lagrange multipliers.
To find an optimal allocation, form a Lagrangian

ℒ(⃗𝐶, �⃗�, ⃗𝜇) =
𝑇

∑
𝑡=0

𝛽𝑡 {𝑢(𝐶𝑡) + 𝜇𝑡 (𝐹(𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡 − 𝐾𝑡+1)} (8.6)

and pose the following min-max problem:
min

�⃗�
max

⃗𝐶,�⃗�
ℒ(⃗𝐶, �⃗�, ⃗𝜇) (8.7)

• Extremization means maximization with respect to ⃗𝐶, �⃗� and minimization with respect to ⃗𝜇.
• Our problem satisfies conditions that assure that second-order conditions are satisfied at an allocation that satisfies
the first-order necessary conditions that we are about to compute.

Before computing first-order conditions, we present some handy formulas.

8.3.1 Useful Properties of Linearly Homogeneous Production Function

The following technicalities will help us.
Notice that

𝐹(𝐾𝑡, 𝑁𝑡) = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

𝑡 = 𝑁𝑡𝐴 (𝐾𝑡
𝑁𝑡

)
𝛼

Define the output per-capita production function
𝐹(𝐾𝑡, 𝑁𝑡)

𝑁𝑡
≡ 𝑓 (𝐾𝑡

𝑁𝑡
) = 𝐴 (𝐾𝑡

𝑁𝑡
)

𝛼

whose argument is capital per-capita.
It is useful to recall the following calculations for the marginal product of capital

𝜕𝐹(𝐾𝑡, 𝑁𝑡)
𝜕𝐾𝑡

=
𝜕𝑁𝑡𝑓 (𝐾𝑡

𝑁𝑡
)

𝜕𝐾𝑡

= 𝑁𝑡𝑓 ′ (𝐾𝑡
𝑁𝑡

) 1
𝑁𝑡

(Chain rule)

= 𝑓 ′ (𝐾𝑡
𝑁𝑡

)∣
𝑁𝑡=1

= 𝑓 ′(𝐾𝑡)

(8.8)

and the marginal product of labor

𝜕𝐹(𝐾𝑡, 𝑁𝑡)
𝜕𝑁𝑡

=
𝜕𝑁𝑡𝑓 (𝐾𝑡

𝑁𝑡
)

𝜕𝑁𝑡
(Product rule)

= 𝑓 (𝐾𝑡
𝑁𝑡

) +𝑁𝑡𝑓 ′ (𝐾𝑡
𝑁𝑡

) −𝐾𝑡
𝑁2

𝑡
(Chain rule)

= 𝑓 (𝐾𝑡
𝑁𝑡

) −𝐾𝑡
𝑁𝑡

𝑓 ′ (𝐾𝑡
𝑁𝑡

)∣
𝑁𝑡=1

= 𝑓(𝐾𝑡) − 𝑓 ′(𝐾𝑡)𝐾𝑡

150 Chapter 8. Cass-Koopmans Model

Equilibrium Models

(Here we are using that 𝑁𝑡 = 1 for all 𝑡, so that 𝐾𝑡 = 𝐾𝑡
𝑁𝑡
.)

8.3.2 First-order necessary conditions

We now compute first-order necessary conditions for extremization of Lagrangian (8.6):

𝐶𝑡 ∶ 𝑢′(𝐶𝑡) − 𝜇𝑡 = 0 for all 𝑡 = 0, 1, … , 𝑇 (8.9)

𝐾𝑡 ∶ 𝛽𝜇𝑡 [(1 − 𝛿) + 𝑓 ′(𝐾𝑡)] − 𝜇𝑡−1 = 0 for all 𝑡 = 1, 2, … , 𝑇 (8.10)

𝜇𝑡 ∶ 𝐹 (𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡 − 𝐾𝑡+1 = 0 for all 𝑡 = 0, 1, … , 𝑇 (8.11)

𝐾𝑇 +1 ∶ −𝜇𝑇 ≤ 0, ≤ 0 if 𝐾𝑇 +1 = 0; = 0 if 𝐾𝑇 +1 > 0 (8.12)
In computing (8.10) we recognize that 𝐾𝑡 appears in both the time 𝑡 and time 𝑡 − 1 feasibility constraints (8.5).
Restrictions (8.12) come from differentiating with respect to 𝐾𝑇 +1 and applying the following Karush-Kuhn-Tucker
condition (KKT) (see Karush-Kuhn-Tucker conditions):

𝜇𝑇 𝐾𝑇 +1 = 0 (8.13)

Combining (8.9) and (8.10) gives

𝛽𝑢′ (𝐶𝑡) [(1 − 𝛿) + 𝑓 ′ (𝐾𝑡)] − 𝑢′ (𝐶𝑡−1) = 0 for all 𝑡 = 1, 2, … , 𝑇 + 1

which can be rearranged to become

𝛽𝑢′ (𝐶𝑡+1) [(1 − 𝛿) + 𝑓 ′ (𝐾𝑡+1)] = 𝑢′ (𝐶𝑡) for all 𝑡 = 0, 1, … , 𝑇 (8.14)

Applying the inverse marginal utility of consumption function on both sides of the above equation gives

𝐶𝑡+1 = 𝑢′−1 ((𝛽
𝑢′(𝐶𝑡)

[𝑓 ′(𝐾𝑡+1) + (1 − 𝛿)])
−1

)

which for our utility function (8.3) becomes the consumption Euler equation

𝐶𝑡+1 = (𝛽𝐶𝛾
𝑡 [𝑓 ′(𝐾𝑡+1) + (1 − 𝛿)])1/𝛾

which we can combine with the feasibility constraint (8.5) to get

𝐶𝑡+1 = 𝐶𝑡 (𝛽[𝑓 ′(𝐹(𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡) + (1 − 𝛿)])1/𝛾

𝐾𝑡+1 = 𝐹(𝐾𝑡, 1) + (1 − 𝛿)𝐾𝑡 − 𝐶𝑡.
This is a pair of non-linear first-order difference equations that map 𝐶𝑡, 𝐾𝑡 into 𝐶𝑡+1, 𝐾𝑡+1 and that an optimal sequence

⃗𝐶, �⃗� must satisfy.
It must also satisfy the initial condition that 𝐾0 is given and 𝐾𝑇 +1 = 0.
Below we define a jitclass that stores parameters and functions that define our economy.

planning_data = [
('γ', float64), # Coefficient of relative risk aversion
('β', float64), # Discount factor
('δ', float64), # Depreciation rate on capital
('α', float64), # Return to capital per capita
('A', float64) # Technology

]

8.3. Planning Problem 151

https://en.wikipedia.org/wiki/Karush-Kuhn-Tucker_conditions

Equilibrium Models

@jitclass(planning_data)
class PlanningProblem():

def __init__(self, γ=2, β=0.95, δ=0.02, α=0.33, A=1):

self.γ, self.β = γ, β
self.δ, self.α, self.A = δ, α, A

def u(self, c):
'''
Utility function
ASIDE: If you have a utility function that is hard to solve by hand
you can use automatic or symbolic differentiation
See https://github.com/HIPS/autograd
'''
γ = self.γ

return c ** (1 - γ) / (1 - γ) if γ!= 1 else np.log(c)

def u_prime(self, c):
'Derivative of utility'
γ = self.γ

return c ** (-γ)

def u_prime_inv(self, c):
'Inverse of derivative of utility'
γ = self.γ

return c ** (-1 / γ)

def f(self, k):
'Production function'
α, A = self.α, self.A

return A * k ** α

def f_prime(self, k):
'Derivative of production function'
α, A = self.α, self.A

return α * A * k ** (α - 1)

def f_prime_inv(self, k):
'Inverse of derivative of production function'
α, A = self.α, self.A

return (k / (A * α)) ** (1 / (α - 1))

def next_k_c(self, k, c):
''''
Given the current capital Kt and an arbitrary feasible
consumption choice Ct, computes Kt+1 by state transition law
and optimal Ct+1 by Euler equation.
'''
β, δ = self.β, self.δ
u_prime, u_prime_inv = self.u_prime, self.u_prime_inv

(continues on next page)

152 Chapter 8. Cass-Koopmans Model

Equilibrium Models

(continued from previous page)

f, f_prime = self.f, self.f_prime

k_next = f(k) + (1 - δ) * k - c
c_next = u_prime_inv(u_prime(c) / (β * (f_prime(k_next) + (1 - δ))))

return k_next, c_next

We can construct an economy with the Python code:

pp = PlanningProblem()

8.4 Shooting Algorithm

We use shooting to compute an optimal allocation ⃗𝐶, �⃗� and an associated Lagrange multiplier sequence ⃗𝜇.
First-order necessary conditions (8.9), (8.10), and (8.11) for the planning problem form a system of difference equations
with two boundary conditions:

• 𝐾0 is a given initial condition for capital
• 𝐾𝑇 +1 = 0 is a terminal condition for capital that we deduced from the first-order necessary condition for 𝐾𝑇 +1
the KKT condition (8.13)

We have no initial condition for the Lagrange multiplier 𝜇0.
If we did, our job would be easy:

• Given 𝜇0 and 𝑘0, we could compute 𝑐0 from equation (8.9) and then 𝑘1 from equation (8.11) and 𝜇1 from equation
(8.10).

• We could continue in this way to compute the remaining elements of ⃗𝐶, �⃗�, ⃗𝜇.
However, we woujld not be assured that the Kuhn-Tucker condition (8.13) would be satisfied.
Furthermore, we don’t have an initial condition for 𝜇0.
So this won’t work.
Indeed, part of our task is to compute the optimal value of 𝜇0.
To compute 𝜇0 and the other objects we want, a simple modification of the above procedure will work.
It is called the shooting algorithm.
It is an instance of a guess and verify algorithm that consists of the following steps:

• Guess an initial Lagrange multiplier 𝜇0.
• Apply the simple algorithm described above.
• Compute 𝐾𝑇 +1 and check whether it equals zero.
• If 𝐾𝑇 +1 = 0, we have solved the problem.
• If 𝐾𝑇 +1 > 0, lower 𝜇0 and try again.
• If 𝐾𝑇 +1 < 0, raise 𝜇0 and try again.

The following Python code implements the shooting algorithm for the planning problem.
(Actually, we modified the preceding algorithm slightly by starting with a guess for 𝑐0 instead of 𝜇0 in the following code.)

8.4. Shooting Algorithm 153

Equilibrium Models

@njit
def shooting(pp, c0, k0, T=10):

'''
Given the initial condition of capital k0 and an initial guess
of consumption c0, computes the whole paths of c and k
using the state transition law and Euler equation for T periods.
'''
if c0 > pp.f(k0):

print("initial consumption is not feasible")

return None

initialize vectors of c and k
c_vec = np.empty(T+1)
k_vec = np.empty(T+2)

c_vec[0] = c0
k_vec[0] = k0

for t in range(T):
k_vec[t+1], c_vec[t+1] = pp.next_k_c(k_vec[t], c_vec[t])

k_vec[T+1] = pp.f(k_vec[T]) + (1 - pp.δ) * k_vec[T] - c_vec[T]

return c_vec, k_vec

We’ll start with an incorrect guess.

paths = shooting(pp, 0.2, 0.3, T=10)

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

colors = ['blue', 'red']
titles = ['Consumption', 'Capital']
ylabels = ['c_t', 'k_t']

T = paths[0].size - 1
for i in range(2):

axs[i].plot(paths[i], c=colors[i])
axs[i].set(xlabel='t', ylabel=ylabels[i], title=titles[i])

axs[1].scatter(T+1, 0, s=80)
axs[1].axvline(T+1, color='k', ls='--', lw=1)

plt.show()

154 Chapter 8. Cass-Koopmans Model

Equilibrium Models

Evidently, our initial guess for 𝜇0 is too high, so initial consumption too low.
We know this because we miss our 𝐾𝑇 +1 = 0 target on the high side.
Now we automate things with a search-for-a-good 𝜇0 algorithm that stops when we hit the target 𝐾𝑡+1 = 0.
We use a bisection method.
We make an initial guess for 𝐶0 (we can eliminate 𝜇0 because 𝐶0 is an exact function of 𝜇0).
We know that the lowest 𝐶0 can ever be is 0 and that the largest it can be is initial output 𝑓(𝐾0).
Guess 𝐶0 and shoot forward to 𝑇 + 1.
If 𝐾𝑇 +1 > 0, we take it to be our new lower bound on 𝐶0.
If 𝐾𝑇 +1 < 0, we take it to be our new upper bound.
Make a new guess for 𝐶0 that is halfway between our new upper and lower bounds.
Shoot forward again, iterating on these steps until we converge.
When 𝐾𝑇 +1 gets close enough to 0 (i.e., within an error tolerance bounds), we stop.

@njit
def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):

initial boundaries for guess c0
c0_upper = pp.f(k0)
c0_lower = 0

i = 0
while True:

c_vec, k_vec = shooting(pp, c0, k0, T)
error = k_vec[-1] - k_ter

check if the terminal condition is satisfied
if np.abs(error) < tol:

if verbose:
print('Converged successfully on iteration ', i+1)

return c_vec, k_vec

i += 1
if i == max_iter:

(continues on next page)

8.4. Shooting Algorithm 155

Equilibrium Models

(continued from previous page)

if verbose:
print('Convergence failed.')

return c_vec, k_vec

if iteration continues, updates boundaries and guess of c0
if error > 0:

c0_lower = c0
else:

c0_upper = c0

c0 = (c0_lower + c0_upper) / 2

def plot_paths(pp, c0, k0, T_arr, k_ter=0, k_ss=None, axs=None):

if axs is None:
fix, axs = plt.subplots(1, 3, figsize=(16, 4))

ylabels = ['c_t', 'k_t', 'μ_t']
titles = ['Consumption', 'Capital', 'Lagrange Multiplier']

c_paths = []
k_paths = []
for T in T_arr:

c_vec, k_vec = bisection(pp, c0, k0, T, k_ter=k_ter, verbose=False)
c_paths.append(c_vec)
k_paths.append(k_vec)

μ_vec = pp.u_prime(c_vec)
paths = [c_vec, k_vec, μ_vec]

for i in range(3):
axs[i].plot(paths[i])
axs[i].set(xlabel='t', ylabel=ylabels[i], title=titles[i])

Plot steady state value of capital
if k_ss is not None:

axs[1].axhline(k_ss, c='k', ls='--', lw=1)

axs[1].axvline(T+1, c='k', ls='--', lw=1)
axs[1].scatter(T+1, paths[1][-1], s=80)

return c_paths, k_paths

Now we can solve the model and plot the paths of consumption, capital, and Lagrange multiplier.

plot_paths(pp, 0.3, 0.3, [10]);

156 Chapter 8. Cass-Koopmans Model

Equilibrium Models

8.5 Setting Initial Capital to Steady State Capital

When 𝑇 → +∞, the optimal allocation converges to steady state values of 𝐶𝑡 and 𝐾𝑡.
It is instructive to set 𝐾0 equal to the lim𝑇 →+∞ 𝐾𝑡, which we’ll call steady state capital.
In a steady state 𝐾𝑡+1 = 𝐾𝑡 = �̄� for all very large 𝑡.
Evalauating feasibility constraint (8.5) at �̄� gives

𝑓(�̄�) − 𝛿�̄� = ̄𝐶 (8.15)

Substituting 𝐾𝑡 = �̄� and 𝐶𝑡 = ̄𝐶 for all 𝑡 into (8.14) gives

1 = 𝛽 𝑢′(̄𝐶)
𝑢′(̄𝐶) [𝑓 ′(�̄�) + (1 − 𝛿)]

Defining 𝛽 = 1
1+𝜌 , and cancelling gives

1 + 𝜌 = 1[𝑓 ′(�̄�) + (1 − 𝛿)]

Simplifying gives

𝑓 ′(�̄�) = 𝜌 + 𝛿

and

�̄� = 𝑓 ′−1(𝜌 + 𝛿)

For production function (8.4), this becomes

𝛼�̄�𝛼−1 = 𝜌 + 𝛿

As an example, after setting 𝛼 = .33, 𝜌 = 1/𝛽 − 1 = 1/(19/20) − 1 = 20/19 − 19/19 = 1/19, 𝛿 = 1/50, we get

�̄� = (
33

100
1

50 + 1
19

)
67

100

≈ 9.57583

Let’s verify this with Python and then use this steady state �̄� as our initial capital stock 𝐾0.

ρ = 1 / pp.β - 1
k_ss = pp.f_prime_inv(ρ+pp.δ)

print(f'steady state for capital is: {k_ss}')

8.5. Setting Initial Capital to Steady State Capital 157

Equilibrium Models

steady state for capital is: 9.57583816331462

Now we plot

plot_paths(pp, 0.3, k_ss, [150], k_ss=k_ss);

Evidently, with a large value of 𝑇 , 𝐾𝑡 stays near 𝐾0 until 𝑡 approaches 𝑇 closely.
Let’s see what the planner does when we set 𝐾0 below �̄�.

plot_paths(pp, 0.3, k_ss/3, [150], k_ss=k_ss);

Notice how the planner pushes capital toward the steady state, stays near there for a while, then pushes 𝐾𝑡 toward the
terminal value 𝐾𝑇 +1 = 0 when 𝑡 closely approaches 𝑇 .
The following graphs compare optimal outcomes as we vary 𝑇 .

plot_paths(pp, 0.3, k_ss/3, [150, 75, 50, 25], k_ss=k_ss);

158 Chapter 8. Cass-Koopmans Model

Equilibrium Models

8.6 A Turnpike Property

The following calculation indicates that when 𝑇 is very large, the optimal capital stock stays close to its steady state value
most of the time.

plot_paths(pp, 0.3, k_ss/3, [250, 150, 50, 25], k_ss=k_ss);

In the above graphs, different colors are associated with different horizons 𝑇 .
Notice that as the horizon increases, the planner keeps 𝐾𝑡 closer to the steady state value �̄� for longer.
This pattern reflects a turnpike property of the steady state.
A rule of thumb for the planner is

• from 𝐾0, push 𝐾𝑡 toward the steady state and stay close to the steady state until time approaches 𝑇 .
The planner accomplishes this by adjusting the saving rate 𝑓(𝐾𝑡)−𝐶𝑡

𝑓(𝐾𝑡) over time.

Let’s calculate and plot the saving rate.

@njit
def saving_rate(pp, c_path, k_path):

'Given paths of c and k, computes the path of saving rate.'
production = pp.f(k_path[:-1])

return (production - c_path) / production

def plot_saving_rate(pp, c0, k0, T_arr, k_ter=0, k_ss=None, s_ss=None):

fix, axs = plt.subplots(2, 2, figsize=(12, 9))

c_paths, k_paths = plot_paths(pp, c0, k0, T_arr, k_ter=k_ter, k_ss=k_ss, axs=axs.
↪flatten())

for i, T in enumerate(T_arr):
s_path = saving_rate(pp, c_paths[i], k_paths[i])
axs[1, 1].plot(s_path)

axs[1, 1].set(xlabel='t', ylabel='s_t', title='Saving rate')

if s_ss is not None:
axs[1, 1].hlines(s_ss, 0, np.max(T_arr), linestyle='--')

8.6. A Turnpike Property 159

Equilibrium Models

plot_saving_rate(pp, 0.3, k_ss/3, [250, 150, 75, 50], k_ss=k_ss)

8.7 A Limiting Infinite Horizon Economy

We want to set 𝑇 = +∞.
The appropriate thing to do is to replace terminal condition (8.12) with

lim
𝑇 →+∞

𝛽𝑇 𝑢′(𝐶𝑇)𝐾𝑇 +1 = 0,

a condition that will be satisfied by a path that converges to an optimal steady state.
We can approximate the optimal path by starting from an arbitrary initial 𝐾0 and shooting towards the optimal steady
state 𝐾 at a large but finite 𝑇 + 1.
In the following code, we do this for a large 𝑇 and plot consumption, capital, and the saving rate.

We know that in the steady state that the saving rate is constant and that ̄𝑠 = 𝑓(�̄�)− ̄𝐶
𝑓(�̄�) .

From (8.15) the steady state saving rate equals

̄𝑠 = 𝛿�̄�
𝑓(�̄�)

160 Chapter 8. Cass-Koopmans Model

Equilibrium Models

The steady state saving rate ̄𝑆 = ̄𝑠𝑓(�̄�) is the amount required to offset capital depreciation each period.
We first study optimal capital paths that start below the steady state.

steady state of saving rate
s_ss = pp.δ * k_ss / pp.f(k_ss)

plot_saving_rate(pp, 0.3, k_ss/3, [130], k_ter=k_ss, k_ss=k_ss, s_ss=s_ss)

Since 𝐾0 < �̄�, 𝑓 ′(𝐾0) > 𝜌 + 𝛿.
The planner chooses a positive saving rate that is higher than the steady state saving rate.
Note that 𝑓″(𝐾) < 0, so as 𝐾 rises, 𝑓 ′(𝐾) declines.
The planner slowly lowers the saving rate until reaching a steady state in which 𝑓 ′(𝐾) = 𝜌 + 𝛿.

8.7. A Limiting Infinite Horizon Economy 161

Equilibrium Models

8.7.1 Exercise

Exercise 8.7.1
• Plot the optimal consumption, capital, and saving paths when the initial capital level begins at 1.5 times the steady
state level as we shoot towards the steady state at 𝑇 = 130.

• Why does the saving rate respond as it does?

Solution to Exercise 8.7.1

plot_saving_rate(pp, 0.3, k_ss*1.5, [130], k_ter=k_ss, k_ss=k_ss, s_ss=s_ss)

162 Chapter 8. Cass-Koopmans Model

Equilibrium Models

8.8 Concluding Remarks

In Cass-Koopmans Competitive Equilibrium, we study a decentralized version of an economy with exactly the same tech-
nology and preference structure as deployed here.
In that lecture, we replace the planner of this lecture with Adam Smith’s invisible hand.
In place of quantity choices made by the planner, there are market prices that are set by a deus ex machina from outside
the model, a so-called invisible hand.
Equilibrium market prices must reconcile distinct decisions that are made independently by a representative household
and a representative firm.
The relationship between a command economy like the one studied in this lecture and a market economy like that studied
in Cass-Koopmans Competitive Equilibrium is a foundational topic in general equilibrium theory and welfare economics.

8.8. Concluding Remarks 163

Equilibrium Models

164 Chapter 8. Cass-Koopmans Model

CHAPTER

NINE

CASS-KOOPMANS COMPETITIVE EQUILIBRIUM

Contents

• Cass-Koopmans Competitive Equilibrium

– Overview

– Review of Cass-Koopmans Model

– Competitive Equilibrium

– Market Structure

– Firm Problem

– Household Problem

– Computing a Competitive Equilibrium

– Yield Curves and Hicks-Arrow Prices

9.1 Overview

This lecture continues our analysis in this lecture Cass-Koopmans PlanningModel about the model that Tjalling Koopmans
[Koopmans, 1965] and David Cass [Cass, 1965] used to study optimal capital accumulation.
This lecture illustrates what is, in fact, a more general connection between a planned economy and an economy organized
as a competitive equilibrium or a market economy.
The earlier lecture Cass-Koopmans Planning Model studied a planning problem and used ideas including

• A Lagrangian formulation of the planning problem that leads to a system of difference equations.
• A shooting algorithm for solving difference equations subject to initial and terminal conditions.
• A turnpike property that describes optimal paths for long-but-finite horizon economies.

The present lecture uses additional ideas including
• Hicks-Arrow prices, named after John R. Hicks and Kenneth Arrow.
• A connection between some Lagrange multipliers from the planning problem and the Hicks-Arrow prices.
• A Big 𝐾 , little 𝑘 trick widely used in macroeconomic dynamics.

– We shall encounter this trick in this lecture and also in this lecture.
• A non-stochastic version of a theory of the term structure of interest rates.

165

https://python.quantecon.org/rational_expectations.html
https://python-advanced.quantecon.org/dyn_stack.html

Equilibrium Models

• An intimate connection between two ways to organize an economy, namely:
– socialism in which a central planner commands the allocation of resources, and
– competitive markets in which competitive equilibrium prices induce individual consumers and producers
to choose a socially optimal allocation as unintended consequences of their selfish decisions

Let’s start with some standard imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
from numba import njit, float64
from numba.experimental import jitclass
import numpy as np

9.2 Review of Cass-Koopmans Model

The physical setting is identical with that in Cass-Koopmans Planning Model.
Time is discrete and takes values 𝑡 = 0, 1, … , 𝑇 .
Output of a single good can either be consumed or invested in physical capital.
The capital good is durable but partially depreciates each period at a constant rate.
We let 𝐶𝑡 be a nondurable consumption good at time t.
Let 𝐾𝑡 be the stock of physical capital at time t.

Let ⃗𝐶 = {𝐶0, … , 𝐶𝑇 } and �⃗� = {𝐾0, … , 𝐾𝑇 +1}.
A representative household is endowed with one unit of labor at each 𝑡 and likes the consumption good at each 𝑡.
The representative household inelastically supplies a single unit of labor 𝑁𝑡 at each 𝑡, so that 𝑁𝑡 = 1 for all 𝑡 ∈
{0, 1, … , 𝑇 }.
The representative household has preferences over consumption bundles ordered by the utility functional:

𝑈(⃗𝐶) =
𝑇

∑
𝑡=0

𝛽𝑡 𝐶1−𝛾
𝑡

1 − 𝛾

where 𝛽 ∈ (0, 1) is a discount factor and 𝛾 > 0 governs the curvature of the one-period utility function.
We assume that 𝐾0 > 0.
There is an economy-wide production function

𝐹(𝐾𝑡, 𝑁𝑡) = 𝐴𝐾𝛼
𝑡 𝑁1−𝛼

𝑡

with 0 < 𝛼 < 1, 𝐴 > 0.
A feasible allocation ⃗𝐶, �⃗� satisfies

𝐶𝑡 + 𝐾𝑡+1 ≤ 𝐹(𝐾𝑡, 𝑁𝑡) + (1 − 𝛿)𝐾𝑡 for all 𝑡 ∈ {0, 1, … , 𝑇 }

where 𝛿 ∈ (0, 1) is a depreciation rate of capital.

166 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

9.2.1 Planning Problem

In this lecture Cass-Koopmans Planning Model, we studied a problem in which a planner chooses an allocation { ⃗𝐶, �⃗�}
to maximize (8.2) subject to (8.5).
The allocation that solves the planning problem reappears in a competitive equilibrium, as we shall see below.

9.3 Competitive Equilibrium

We now study a decentralized version of the economy.
It shares the same technology and preference structure as the planned economy studied in this lecture Cass-Koopmans
Planning Model.
But now there is no planner.
There are (unit masses of) price-taking consumers and firms.
Market prices are set to reconcile distinct decisions that are made separately by a representative consumer and a repre-
sentative firm.
There is a representative consumer who has the same preferences over consumption plans as did a consumer in the planned
economy.
Instead of being told what to consume and save by a planner, a consumer (also known as a household) chooses for itself
subject to a budget constraint.

• At each time 𝑡, the consumer receives wages and rentals of capital from a firm – these comprise its income at time
𝑡.

• The consumer decides how much income to allocate to consumption or to savings.
• The household can save either by acquiring additional physical capital (it trades one for one with time 𝑡 consumption)
or by acquiring claims on consumption at dates other than 𝑡.

• The household owns physical capital and labor and rents them to the firm.
• The household consumes, supplies labor, and invests in physical capital.
• A profit-maximizing representative firm operates the production technology.
• The firm rents labor and capital each period from the representative household and sells its output each period to
the household.

• The representative household and the representative firm are both price takers who believe that prices are not
affected by their choices

Note: Again, we can think of there being unit measures of identical representative consumers and identical representative
firms.

9.3. Competitive Equilibrium 167

Equilibrium Models

9.4 Market Structure

The representative household and the representative firm are both price takers.
The household owns both factors of production, namely, labor and physical capital.
Each period, the firm rents both factors from the household.
There is a single grand competitive market in which a household trades date 0 goods for goods at all other dates 𝑡 =
1, 2, … , 𝑇 .

9.4.1 Prices

There are sequences of prices {𝑤𝑡, 𝜂𝑡}𝑇
𝑡=0 = {�⃗�, ⃗𝜂} where

• 𝑤𝑡 is a wage, i.e., a rental rate, for labor at time 𝑡
• 𝜂𝑡 is a rental rate for capital at time 𝑡

In addition there is a vector {𝑞0
𝑡 } of intertemporal prices where

• 𝑞0
𝑡 is the price at time 0 of one unit of the good at date 𝑡.

We call {𝑞0
𝑡 }𝑇

𝑡=0 a vector of Hicks-Arrow prices, named after the 1972 economics Nobel prize winners.
Because is a relative price. the unit of account in terms of which the prices 𝑞0

𝑡 are stated is; we are free to re-normalize
them by multiplying all of them by a positive scalar, say 𝜆 > 0.
Units of 𝑞0

𝑡 could be set so that they are

number of time 0 goods
number of time t goods

In this case, we would be taking the time 0 consumption good to be the numeraire.

9.5 Firm Problem

At time 𝑡 a representative firm hires labor �̃�𝑡 and capital �̃�𝑡.
The firm’s profits at time 𝑡 are

𝐹(�̃�𝑡, �̃�𝑡) − 𝑤𝑡�̃�𝑡 − 𝜂𝑡�̃�𝑡

where 𝑤𝑡 is a wage rate at 𝑡 and 𝜂𝑡 is the rental rate on capital at 𝑡.
As in the planned economy model

𝐹(�̃�𝑡, �̃�𝑡) = 𝐴�̃�𝛼
𝑡 �̃�1−𝛼

𝑡

168 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

9.5.1 Zero Profit Conditions

Zero-profits conditions for capital and labor are

𝐹𝑘(�̃�𝑡, �̃�𝑡) = 𝜂𝑡

and

𝐹𝑛(�̃�𝑡, �̃�𝑡) = 𝑤𝑡 (9.1)

These conditions emerge from a no-arbitrage requirement.
To describe this no-arbitrage profits reasoning, we begin by applying a theorem of Euler about linearly homogenous
functions.
The theorem applies to the Cobb-Douglas production function because we it displays constant returns to scale:

𝛼𝐹(�̃�𝑡, �̃�𝑡) = 𝐹(𝛼�̃�𝑡, 𝛼�̃�𝑡)
for 𝛼 ∈ (0, 1).
Taking partial derivatives 𝜕

𝜕𝛼 on both sides of the above equation gives

𝐹(�̃�𝑡, �̃�𝑡) = 𝜕𝐹
𝜕�̃�𝑡

�̃�𝑡 + 𝜕𝐹
𝜕�̃�𝑡

�̃�𝑡

Rewrite the firm’s profits as
𝜕𝐹
𝜕�̃�𝑡

�̃�𝑡 + 𝜕𝐹
𝜕�̃�𝑡

�̃�𝑡 − 𝑤𝑡�̃�𝑡 − 𝜂𝑡𝑘𝑡

or

(𝜕𝐹
𝜕�̃�𝑡

− 𝜂𝑡) �̃�𝑡 + (𝜕𝐹
𝜕�̃�𝑡

− 𝑤𝑡) �̃�𝑡

Because 𝐹 is homogeneous of degree 1, it follows that 𝜕𝐹
𝜕�̃�𝑡

and 𝜕𝐹
𝜕�̃�𝑡

are homogeneous of degree 0 and therefore fixed
with respect to �̃�𝑡 and �̃�𝑡.

If 𝜕𝐹
𝜕�̃�𝑡

> 𝜂𝑡, then the firm makes positive profits on each additional unit of �̃�𝑡, so it would want to make �̃�𝑡 arbitrarily
large.

But setting �̃�𝑡 = +∞ is not physically feasible, so equilibrium prices must take values that present the firm with no such
arbitrage opportunity.
A similar argument applies if 𝜕𝐹

𝜕�̃�𝑡
> 𝑤𝑡.

If 𝜕�̃�𝑡
𝜕�̃�𝑡

< 𝜂𝑡, the firm would want to set �̃�𝑡 to zero, which is not feasible.

It is convenient to define �⃗� = {𝑤0, … , 𝑤𝑇 } and ⃗𝜂 = {𝜂0, … , 𝜂𝑇 }.

9.6 Household Problem

A representative household lives at 𝑡 = 0, 1, … , 𝑇 .
At 𝑡, the household rents 1 unit of labor and 𝑘𝑡 units of capital to a firm and receives income

𝑤𝑡1 + 𝜂𝑡𝑘𝑡

At 𝑡 the household allocates its income to the following purchases between the following two categories:

9.6. Household Problem 169

Equilibrium Models

• consumption 𝑐𝑡

• net investment 𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡

Here (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) is the household’s net investment in physical capital and 𝛿 ∈ (0, 1) is again a depreciation rate
of capital.
In period 𝑡, the consumer is free to purchase more goods to be consumed and invested in physical capital than its income
from supplying capital and labor to the firm, provided that in some other periods its income exceeds its purchases.
A consumer’s net excess demand for time 𝑡 consumption goods is the gap

𝑒𝑡 ≡ (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡)) − (𝑤𝑡1 + 𝜂𝑡𝑘𝑡)

Let ⃗𝑐 = {𝑐0, … , 𝑐𝑇 } and let �⃗� = {𝑘1, … , 𝑘𝑇 +1}.
𝑘0 is given to the household.
The household faces a single budget constraint that requires that the present value of the household’s net excess demands
must be zero:

𝑇
∑
𝑡=0

𝑞0
𝑡 𝑒𝑡 ≤ 0

or
𝑇

∑
𝑡=0

𝑞0
𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡)) ≤

𝑇
∑
𝑡=0

𝑞0
𝑡 (𝑤𝑡1 + 𝜂𝑡𝑘𝑡)

The household faces price system {𝑞0
𝑡 , 𝑤𝑡, 𝜂𝑡} as a price-taker and chooses an allocation to solve the constrained opti-

mization problem:

max
⃗𝑐,�⃗�

𝑇
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

subject to
𝑇

∑
𝑡=0

𝑞0
𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) − (𝑤𝑡 − 𝜂𝑡𝑘𝑡)) ≤ 0

Components of a price system have the following units:
• 𝑤𝑡 is measured in units of the time 𝑡 good per unit of time 𝑡 labor hired
• 𝜂𝑡 is measured in units of the time 𝑡 good per unit of time 𝑡 capital hired
• 𝑞0

𝑡 is measured in units of a numeraire per unit of the time 𝑡 good

9.6.1 Definitions

• A price system is a sequence {𝑞0
𝑡 , 𝜂𝑡, 𝑤𝑡}𝑇

𝑡=0 = { ⃗𝑞, ⃗𝜂, �⃗�}.
• An allocation is a sequence {𝑐𝑡, 𝑘𝑡+1, 𝑛𝑡 = 1}𝑇

𝑡=0 = { ⃗𝑐, �⃗�, �⃗�}.
• A competitive equilibrium is a price system and an allocation with the following properties:

– Given the price system, the allocation solves the household’s problem.
– Given the price system, the allocation solves the firm’s problem.

The vision here is that an equilibrium price system and allocation are determined once and for all.
In effect, we imagine that all trades occur just before time 0.

170 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

9.7 Computing a Competitive Equilibrium

We compute a competitive equilibrium by using a guess and verify approach.
• We guess equilibrium price sequences { ⃗𝑞, ⃗𝜂, �⃗�}.
• We then verify that at those prices, the household and the firm choose the same allocation.

9.7.1 Guess for Price System

In this lecture Cass-Koopmans Planning Model, we computed an allocation { ⃗𝐶, �⃗�, ⃗𝑁} that solves a planning problem.
We use that allocation to construct a guess for the equilibrium price system.

Note: This allocation will constitute the Big 𝐾 to be in the present instance of the Big 𝐾 , little 𝑘 trick that we’ll apply
to a competitive equilibrium in the spirit of this lecture and this lecture.

In particular, we shall use the following procedure:
• obtain first-order conditions for the representative firm and the representative consumer.

• from these equations, obtain a new set of equations by replacing the firm’s choice variables �̃�, �̃� and the consumer’s
choice variables with the quantities ⃗𝐶, �⃗� that solve the planning problem.

• solve the resulting equations for { ⃗𝑞, ⃗𝜂, �⃗�} as functions of ⃗𝐶, �⃗�.

• verify that at these prices, 𝑐𝑡 = 𝐶𝑡, 𝑘𝑡 = �̃�𝑡 = 𝐾𝑡, �̃�𝑡 = 1 for 𝑡 = 0, 1, … , 𝑇 .
Thus, we guess that for 𝑡 = 0, … , 𝑇 :

𝑞0
𝑡 = 𝛽𝑡𝑢′(𝐶𝑡) (9.2)

𝑤𝑡 = 𝑓(𝐾𝑡) − 𝐾𝑡𝑓 ′(𝐾𝑡) (9.3)

𝜂𝑡 = 𝑓 ′(𝐾𝑡) (9.4)

At these prices, let capital chosen by the household be

𝑘∗
𝑡(⃗𝑞, �⃗�, ⃗𝜂), 𝑡 ≥ 0 (9.5)

and let the allocation chosen by the firm be

�̃�∗
𝑡(⃗𝑞, �⃗�, ⃗𝜂), 𝑡 ≥ 0

and so on.
If our guess for the equilibrium price system is correct, then it must occur that

𝑘∗
𝑡 = �̃�∗

𝑡 (9.6)

1 = �̃�∗
𝑡 (9.7)

𝑐∗
𝑡 + 𝑘∗

𝑡+1 − (1 − 𝛿)𝑘∗
𝑡 = 𝐹(�̃�∗

𝑡 , �̃�∗
𝑡)

We shall verify that for 𝑡 = 0, … , 𝑇 allocations chosen by the household and the firm both equal the allocation that solves
the planning problem:

𝑘∗
𝑡 = �̃�∗

𝑡 = 𝐾𝑡, �̃�𝑡 = 1, 𝑐∗
𝑡 = 𝐶𝑡 (9.8)

9.7. Computing a Competitive Equilibrium 171

https://python.quantecon.org/rational_expectations.html
https://python-advanced.quantecon.org/dyn_stack.html

Equilibrium Models

9.7.2 Verification Procedure

Our approach is firsts to stare at first-order necessary conditions for optimization problems of the household and the firm.
At the price system we have guessed, we’ll then verify that both sets of first-order conditions are satisfied at the allocation
that solves the planning problem.

9.7.3 Household’s Lagrangian

To solve the household’s problem, we formulate the Lagrangian

ℒ(⃗𝑐, �⃗�, 𝜆) =
𝑇

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) + 𝜆 (
𝑇

∑
𝑡=0

𝑞0
𝑡 (((1 − 𝛿)𝑘𝑡 − 𝑤𝑡) + 𝜂𝑡𝑘𝑡 − 𝑐𝑡 − 𝑘𝑡+1))

and attack the min-max problem:

min
𝜆

max
⃗𝑐,�⃗�

ℒ(⃗𝑐, �⃗�, 𝜆)

First-order conditions are

𝑐𝑡 ∶ 𝛽𝑡𝑢′(𝑐𝑡) − 𝜆𝑞0
𝑡 = 0 𝑡 = 0, 1, … , 𝑇 (9.9)

𝑘𝑡 ∶ −𝜆𝑞0
𝑡 [(1 − 𝛿) + 𝜂𝑡] + 𝜆𝑞0

𝑡−1 = 0 𝑡 = 1, 2, … , 𝑇 + 1 (9.10)

𝜆 ∶ (
𝑇

∑
𝑡=0

𝑞0
𝑡 (𝑐𝑡 + (𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡) − 𝑤𝑡 − 𝜂𝑡𝑘𝑡)) ≤ 0 (9.11)

𝑘𝑇 +1 ∶ −𝜆𝑞𝑇 +1
0 ≤ 0, ≤ 0 if 𝑘𝑇 +1 = 0; = 0 if 𝑘𝑇 +1 > 0 (9.12)

Now we plug in our guesses of prices and do some algebra in the hope of recovering all first-order necessary conditions
(8.9)-(8.12) for the planning problem from this lecture Cass-Koopmans Planning Model.
Combining (9.9) and (9.2), we get:

𝑢′(𝐶𝑡) = 𝜇𝑡

which is (8.9).
Combining (9.10), (9.2), and (9.4), we get:

−𝜆𝛽𝑡𝜇𝑡 [(1 − 𝛿) + 𝑓 ′(𝐾𝑡)] + 𝜆𝛽𝑡−1𝜇𝑡−1 = 0 (9.13)

Rewriting (9.13) by dividing by 𝜆 on both sides (which is nonzero since u’>0) we get:

𝛽𝑡𝜇𝑡[(1 − 𝛿 + 𝑓 ′(𝐾𝑡)] = 𝛽𝑡−1𝜇𝑡−1

or

𝛽𝜇𝑡[(1 − 𝛿 + 𝑓 ′(𝐾𝑡)] = 𝜇𝑡−1

which is (8.10).
Combining (9.11), (9.2), (9.3) and (9.4) after multiplying both sides of (9.11) by 𝜆, we get

𝑇
∑
𝑡=0

𝛽𝑡𝜇𝑡 (𝐶𝑡 + (𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡) − 𝑓(𝐾𝑡) + 𝐾𝑡𝑓 ′(𝐾𝑡) − 𝑓 ′(𝐾𝑡)𝐾𝑡) ≤ 0

172 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

which simplifies to
𝑇

∑
𝑡=0

𝛽𝑡𝜇𝑡 (𝐶𝑡 + 𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡 − 𝐹(𝐾𝑡, 1)) ≤ 0

Since 𝛽𝑡𝜇𝑡 > 0 for 𝑡 = 0, … , 𝑇 , it follows that

𝐶𝑡 + 𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡 − 𝐹(𝐾𝑡, 1) = 0 for all 𝑡 in {0, 1, … , 𝑇 }

which is (8.11).
Combining (9.12) and (9.2), we get:

−𝛽𝑇 +1𝜇𝑇 +1 ≤ 0

Dividing both sides by 𝛽𝑇 +1 gives

−𝜇𝑇 +1 ≤ 0

which is (8.12) for the planning problem.
Thus, at our guess of the equilibrium price system, the allocation that solves the planning problem also solves the problem
faced by a representative household living in a competitive equilibrium.

9.7.4 Representative Firm’s Problem

We now turn to the problem faced by a firm in a competitive equilibrium:
If we plug (9.8) into (9.1) for all t, we get

𝜕𝐹(𝐾𝑡, 1)
𝜕𝐾𝑡

= 𝑓 ′(𝐾𝑡) = 𝜂𝑡

which is (9.4).
If we now plug (9.8) into (9.1) for all t, we get:

𝜕𝐹(�̃�𝑡, 1)
𝜕�̃�𝑡

= 𝑓(𝐾𝑡) − 𝑓 ′(𝐾𝑡)𝐾𝑡 = 𝑤𝑡

which is exactly (9.5).
Thus, at our guess for the equilibrium price system, the allocation that solves the planning problem also solves the problem
faced by a firm within a competitive equilibrium.
By (9.6) and (9.7) this allocation is identical to the one that solves the consumer’s problem.

Note: Because budget sets are affected only by relative prices, {𝑞0
𝑡 } is determined only up to multiplication by a positive

constant.

Normalization: We are free to choose a {𝑞0
𝑡 } that makes 𝜆 = 1 so that we are measuring 𝑞0

𝑡 in units of the marginal
utility of time 0 goods.
We will plot 𝑞, 𝑤, 𝜂 below to show these equilibrium prices induce the same aggregate movements that we saw earlier in
the planning problem.
To proceed, we bring in Python code that Cass-Koopmans Planning Model used to solve the planning problem
First let’s define a jitclass that stores parameters and functions the characterize an economy.

9.7. Computing a Competitive Equilibrium 173

Equilibrium Models

planning_data = [
('γ', float64), # Coefficient of relative risk aversion
('β', float64), # Discount factor
('δ', float64), # Depreciation rate on capital
('α', float64), # Return to capital per capita
('A', float64) # Technology

]

@jitclass(planning_data)
class PlanningProblem():

def __init__(self, γ=2, β=0.95, δ=0.02, α=0.33, A=1):

self.γ, self.β = γ, β
self.δ, self.α, self.A = δ, α, A

def u(self, c):
'''
Utility function
ASIDE: If you have a utility function that is hard to solve by hand
you can use automatic or symbolic differentiation
See https://github.com/HIPS/autograd
'''
γ = self.γ

return c ** (1 - γ) / (1 - γ) if γ!= 1 else np.log(c)

def u_prime(self, c):
'Derivative of utility'
γ = self.γ

return c ** (-γ)

def u_prime_inv(self, c):
'Inverse of derivative of utility'
γ = self.γ

return c ** (-1 / γ)

def f(self, k):
'Production function'
α, A = self.α, self.A

return A * k ** α

def f_prime(self, k):
'Derivative of production function'
α, A = self.α, self.A

return α * A * k ** (α - 1)

def f_prime_inv(self, k):
'Inverse of derivative of production function'
α, A = self.α, self.A

return (k / (A * α)) ** (1 / (α - 1))

(continues on next page)

174 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

(continued from previous page)

def next_k_c(self, k, c):
''''
Given the current capital Kt and an arbitrary feasible
consumption choice Ct, computes Kt+1 by state transition law
and optimal Ct+1 by Euler equation.
'''
β, δ = self.β, self.δ
u_prime, u_prime_inv = self.u_prime, self.u_prime_inv
f, f_prime = self.f, self.f_prime

k_next = f(k) + (1 - δ) * k - c
c_next = u_prime_inv(u_prime(c) / (β * (f_prime(k_next) + (1 - δ))))

return k_next, c_next

@njit
def shooting(pp, c0, k0, T=10):

'''
Given the initial condition of capital k0 and an initial guess
of consumption c0, computes the whole paths of c and k
using the state transition law and Euler equation for T periods.
'''
if c0 > pp.f(k0):

print("initial consumption is not feasible")

return None

initialize vectors of c and k
c_vec = np.empty(T+1)
k_vec = np.empty(T+2)

c_vec[0] = c0
k_vec[0] = k0

for t in range(T):
k_vec[t+1], c_vec[t+1] = pp.next_k_c(k_vec[t], c_vec[t])

k_vec[T+1] = pp.f(k_vec[T]) + (1 - pp.δ) * k_vec[T] - c_vec[T]

return c_vec, k_vec

@njit
def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):

initial boundaries for guess c0
c0_upper = pp.f(k0)
c0_lower = 0

i = 0
while True:

c_vec, k_vec = shooting(pp, c0, k0, T)
error = k_vec[-1] - k_ter

check if the terminal condition is satisfied

(continues on next page)

9.7. Computing a Competitive Equilibrium 175

Equilibrium Models

(continued from previous page)

if np.abs(error) < tol:
if verbose:

print('Converged successfully on iteration ', i+1)
return c_vec, k_vec

i += 1
if i == max_iter:

if verbose:
print('Convergence failed.')

return c_vec, k_vec

if iteration continues, updates boundaries and guess of c0
if error > 0:

c0_lower = c0
else:

c0_upper = c0

c0 = (c0_lower + c0_upper) / 2

pp = PlanningProblem()

Steady states
ρ = 1 / pp.β - 1
k_ss = pp.f_prime_inv(ρ+pp.δ)
c_ss = pp.f(k_ss) - pp.δ * k_ss

The above code from this lecture Cass-Koopmans Planning Model lets us compute an optimal allocation for the planning
problem.

• from the preceding analysis, we know that it will also be an allocation associated with a competitive equilibium.
Now we’re ready to bring in Python code that we require to compute additional objects that appear in a competitive
equilibrium.

@njit
def q(pp, c_path):

Here we choose numeraire to be u'(c_0) -- this is q^(t_0)_t
T = len(c_path) - 1
q_path = np.ones(T+1)
q_path[0] = 1
for t in range(1, T+1):

q_path[t] = pp.β ** t * pp.u_prime(c_path[t])
return q_path

@njit
def w(pp, k_path):

w_path = pp.f(k_path) - k_path * pp.f_prime(k_path)
return w_path

@njit
def η(pp, k_path):

η_path = pp.f_prime(k_path)
return η_path

Now we calculate and plot for each 𝑇

176 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

T_arr = [250, 150, 75, 50]

fix, axs = plt.subplots(2, 3, figsize=(13, 6))
titles = ['Arrow-Hicks Prices', 'Labor Rental Rate', 'Capital Rental Rate',

'Consumption', 'Capital', 'Lagrange Multiplier']
ylabels = ['q_t^0', 'w_t', 'η_t', 'c_t', 'k_t', 'μ_t']

for T in T_arr:
c_path, k_path = bisection(pp, 0.3, k_ss/3, T, verbose=False)
μ_path = pp.u_prime(c_path)

q_path = q(pp, c_path)
w_path = w(pp, k_path)[:-1]
η_path = η(pp, k_path)[:-1]
paths = [q_path, w_path, η_path, c_path, k_path, μ_path]

for i, ax in enumerate(axs.flatten()):
ax.plot(paths[i])
ax.set(title=titles[i], ylabel=ylabels[i], xlabel='t')
if titles[i] == 'Capital':

ax.axhline(k_ss, lw=1, ls='--', c='k')
if titles[i] == 'Consumption':

ax.axhline(c_ss, lw=1, ls='--', c='k')

plt.tight_layout()
plt.show()

9.7. Computing a Competitive Equilibrium 177

Equilibrium Models

Varying Curvature

Now we see how our results change if we keep 𝑇 constant, but allow the curvature parameter, 𝛾 to vary, starting with 𝐾0
below the steady state.
We plot the results for 𝑇 = 150

T = 150
γ_arr = [1.1, 4, 6, 8]

fix, axs = plt.subplots(2, 3, figsize=(13, 6))

for γ in γ_arr:
pp_γ = PlanningProblem(γ=γ)
c_path, k_path = bisection(pp_γ, 0.3, k_ss/3, T, verbose=False)
μ_path = pp_γ.u_prime(c_path)

q_path = q(pp_γ, c_path)
w_path = w(pp_γ, k_path)[:-1]
η_path = η(pp_γ, k_path)[:-1]
paths = [q_path, w_path, η_path, c_path, k_path, μ_path]

for i, ax in enumerate(axs.flatten()):
ax.plot(paths[i], label=f'$\gamma = {γ}$')
ax.set(title=titles[i], ylabel=ylabels[i], xlabel='t')
if titles[i] == 'Capital':

ax.axhline(k_ss, lw=1, ls='--', c='k')
if titles[i] == 'Consumption':

ax.axhline(c_ss, lw=1, ls='--', c='k')

axs[0, 0].legend()
plt.tight_layout()
plt.show()

Adjusting 𝛾 means adjusting how much individuals prefer to smooth consumption.
Higher 𝛾 means individuals prefer to smooth more resulting in slower convergence to a steady state allocation.
Lower 𝛾 means individuals prefer to smooth less, resulting in faster convergence to a steady state allocation.

178 Chapter 9. Cass-Koopmans Competitive Equilibrium

Equilibrium Models

9.8 Yield Curves and Hicks-Arrow Prices

We return to Hicks-Arrow prices and calculate how they are related to yields on loans of alternative maturities.
This will let us plot a yield curve that graphs yields on bonds of maturities 𝑗 = 1, 2, … against 𝑗 = 1, 2, ….
We use the following formulas.
A yield to maturity on a loan made at time 𝑡0 that matures at time 𝑡 > 𝑡0

𝑟𝑡0,𝑡 = − log 𝑞𝑡0
𝑡

𝑡 − 𝑡0

A Hicks-Arrow price system for a base-year 𝑡0 ≤ 𝑡 satisfies

𝑞𝑡0
𝑡 = 𝛽𝑡−𝑡0

𝑢′(𝑐𝑡)
𝑢′(𝑐𝑡0

) = 𝛽𝑡−𝑡0
𝑐−𝛾

𝑡
𝑐−𝛾

𝑡0

We redefine our function for 𝑞 to allow arbitrary base years, and define a new function for 𝑟, then plot both.
We begin by continuing to assume that 𝑡0 = 0 and plot things for different maturities 𝑡 = 𝑇 , with 𝐾0 below the steady
state

@njit
def q_generic(pp, t0, c_path):

simplify notations
β = pp.β
u_prime = pp.u_prime

T = len(c_path) - 1
q_path = np.zeros(T+1-t0)
q_path[0] = 1
for t in range(t0+1, T+1):

q_path[t-t0] = β ** (t-t0) * u_prime(c_path[t]) / u_prime(c_path[t0])
return q_path

@njit
def r(pp, t0, q_path):

'''Yield to maturity'''
r_path = - np.log(q_path[1:]) / np.arange(1, len(q_path))
return r_path

def plot_yield_curves(pp, t0, c0, k0, T_arr):

fig, axs = plt.subplots(1, 2, figsize=(10, 5))

for T in T_arr:
c_path, k_path = bisection(pp, c0, k0, T, verbose=False)
q_path = q_generic(pp, t0, c_path)
r_path = r(pp, t0, q_path)

axs[0].plot(range(t0, T+1), q_path)
axs[0].set(xlabel='t', ylabel='q_t^0', title='Hicks-Arrow Prices')

axs[1].plot(range(t0+1, T+1), r_path)
axs[1].set(xlabel='t', ylabel='r_t^0', title='Yields')

9.8. Yield Curves and Hicks-Arrow Prices 179

Equilibrium Models

T_arr = [150, 75, 50]
plot_yield_curves(pp, 0, 0.3, k_ss/3, T_arr)

Now we plot when 𝑡0 = 20

plot_yield_curves(pp, 20, 0.3, k_ss/3, T_arr)

180 Chapter 9. Cass-Koopmans Competitive Equilibrium

CHAPTER

TEN

RATIONAL EXPECTATIONS EQUILIBRIUM

Contents

• Rational Expectations Equilibrium

– Overview

– Rational Expectations Equilibrium

– Computing an Equilibrium

– Exercises

“If you’re so smart, why aren’t you rich?”
In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

10.1 Overview

This lecture introduces the concept of a rational expectations equilibrium.
To illustrate it, we describe a linear quadratic version of a model due to Lucas and Prescott [Lucas and Prescott, 1971].
That 1971 paper is one of a small number of research articles that ignited a rational expectations revolution.
We follow Lucas and Prescott by employing a setting that is readily “Bellmanized” (i.e., susceptible to being formulated
as a dynamic programming problems.
Because we use linear quadratic setups for demand and costs, we can deploy the LQ programming techniques described
in this lecture.
We will learn about how a representative agent’s problem differs from a planner’s, and how a planning problem can be
used to compute quantities and prices in a rational expectations equilibrium.
We will also learn about how a rational expectations equilibrium can be characterized as a fixed point of a mapping from
a perceived law of motion to an actual law of motion.
Equality between a perceived and an actual law of motion for endogenous market-wide objects captures in a nutshell what
the rational expectations equilibrium concept is all about.
Finally, we will learn about the important “Big 𝐾, little 𝑘” trick, a modeling device widely used in macroeconomics.
Except that for us

181

https://dle.quantecon.org/lqcontrol.html
https://en.wikipedia.org/wiki/Fixed_point_%28mathematics%29

Equilibrium Models

• Instead of “Big 𝐾” it will be “Big 𝑌 ”.
• Instead of “little 𝑘” it will be “little 𝑦”.

Let’s start with some standard imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np

We’ll also use the LQ class from QuantEcon.py.

from quantecon import LQ

10.1.1 The Big Y, little y Trick

This widely used method applies in contexts in which a representative firm or agent is a “price taker” operating within
a competitive equilibrium.
The following setting justifies the concept of a representative firm that stands in for a large number of other firms too.
There is a uniform unit measure of identical firms named 𝜔 ∈ Ω = [0, 1].
The output of firm 𝜔 is 𝑦(𝜔).

The output of all firms is 𝑌 = ∫1
0 𝑦(𝜔)𝑑 𝜔.

All firms end up choosing to produce the same output, so that at the end of the day 𝑦(𝜔) = 𝑦 and 𝑌 = 𝑦 = ∫1
0 𝑦(𝜔)𝑑 𝜔.

This setting allows us to speak of a representative firm that chooses to produce 𝑦.
We want to impose that

• The representative firm or individual firm takes aggregate 𝑌 as given when it chooses individual 𝑦(𝜔), but ….
• At the end of the day, 𝑌 = 𝑦(𝜔) = 𝑦, so that the representative firm is indeed representative.

The Big 𝑌 , little 𝑦 trick accomplishes these two goals by
• Taking 𝑌 as beyond control when posing the choice problem of who chooses 𝑦; but ….
• Imposing 𝑌 = 𝑦 after having solved the individual’s optimization problem.

Please watch for how this strategy is applied as the lecture unfolds.
We begin by applying the Big 𝑌 , little 𝑦 trick in a very simple static context.

A Simple Static Example of the Big Y, little y Trick

Consider a static model in which a unit measure of firms produce a homogeneous good that is sold in a competitive market.
Each of these firms ends up producing and selling output 𝑦(𝜔) = 𝑦.
The price 𝑝 of the good lies on an inverse demand curve

𝑝 = 𝑎0 − 𝑎1𝑌 (10.1)

where
• 𝑎𝑖 > 0 for 𝑖 = 0, 1

182 Chapter 10. Rational Expectations Equilibrium

Equilibrium Models

• 𝑌 = ∫1
0 𝑦(𝜔)𝑑𝜔 is the market-wide level of output

For convenience, we’ll often just write 𝑦 instead of 𝑦(𝜔) when we are describing the choice problem of an individual firm
𝜔 ∈ Ω.
Each firm has a total cost function

𝑐(𝑦) = 𝑐1𝑦 + 0.5𝑐2𝑦2, 𝑐𝑖 > 0 for 𝑖 = 1, 2

The profits of a representative firm are 𝑝𝑦 − 𝑐(𝑦).
Using (10.1), we can express the problem of the representative firm as

max
𝑦

[(𝑎0 − 𝑎1𝑌)𝑦 − 𝑐1𝑦 − 0.5𝑐2𝑦2] (10.2)

In posing problem (10.2), we want the firm to be a price taker.
We do that by regarding 𝑝 and therefore 𝑌 as exogenous to the firm.
The essence of the Big 𝑌 , little 𝑦 trick is not to set 𝑌 = 𝑛𝑦 before taking the first-order condition with respect to 𝑦 in
problem (10.2).
This assures that the firm is a price taker.
The first-order condition for problem (10.2) is

𝑎0 − 𝑎1𝑌 − 𝑐1 − 𝑐2𝑦 = 0 (10.3)

At this point, but not before, we substitute 𝑌 = 𝑦 into (10.3) to obtain the following linear equation

𝑎0 − 𝑐1 − (𝑎1 + 𝑐2)𝑌 = 0 (10.4)

to be solved for the competitive equilibrium market-wide output 𝑌 .
After solving for 𝑌 , we can compute the competitive equilibrium price 𝑝 from the inverse demand curve (10.1).

10.1.2 Related Planning Problem

Define consumer surplus as the area under the inverse demand curve:

𝑆𝑐(𝑌) = ∫
𝑌

0
(𝑎0 − 𝑎1𝑠)𝑑𝑠 = 𝑎𝑜𝑌 − 𝑎1

2 𝑌 2.

Define the social cost of production as

𝑆𝑝(𝑌) = 𝑐1𝑌 + 𝑐2
2 𝑌 2

Consider the planning problem

max
𝑌

[𝑆𝑐(𝑌) − 𝑆𝑝(𝑌)]

The first-order necessary condition for the planning problem is equation (10.4).
Thus, a 𝑌 that solves (10.4) is a competitive equilibrium output as well as an output that solves the planning problem.
This type of outcome provides an intellectual justification for liking a competitive equilibrium.

10.1. Overview 183

Equilibrium Models

10.1.3 Further Reading

References for this lecture include
• [Lucas and Prescott, 1971]
• [Sargent, 1987], chapter XIV
• [Ljungqvist and Sargent, 2018], chapter 7

10.2 Rational Expectations Equilibrium

Our first illustration of a rational expectations equilibrium involves a market with a unit measure of identical firms, each
of which seeks to maximize the discounted present value of profits in the face of adjustment costs.
The adjustment costs induce the firms to make gradual adjustments, which in turn requires consideration of future prices.
Individual firms understand that, via the inverse demand curve, the price is determined by the amounts supplied by other
firms.
Hence each firm wants to forecast future total industry output.
In our context, a forecast is generated by a belief about the law of motion for the aggregate state.
Rational expectations equilibrium prevails when this belief coincides with the actual law ofmotion generated by production
choices induced by this belief.
We formulate a rational expectations equilibrium in terms of a fixed point of an operator that maps beliefs into optimal
beliefs.

10.2.1 Competitive Equilibrium with Adjustment Costs

To illustrate, consider a collection of 𝑛 firms producing a homogeneous good that is sold in a competitive market.
Each firm sell output 𝑦𝑡(𝜔) = 𝑦𝑡.
The price 𝑝𝑡 of the good lies on the inverse demand curve

𝑝𝑡 = 𝑎0 − 𝑎1𝑌𝑡 (10.5)

where
• 𝑎𝑖 > 0 for 𝑖 = 0, 1

• 𝑌𝑡 = ∫1
0 𝑦𝑡(𝜔)𝑑𝜔 = 𝑦𝑡 is the market-wide level of output

The Firm’s Problem

Each firm is a price taker.
While it faces no uncertainty, it does face adjustment costs
In particular, it chooses a production plan to maximize

∞
∑
𝑡=0

𝛽𝑡𝑟𝑡 (10.6)

184 Chapter 10. Rational Expectations Equilibrium

Equilibrium Models

where

𝑟𝑡 ∶= 𝑝𝑡𝑦𝑡 − 𝛾(𝑦𝑡+1 − 𝑦𝑡)2

2 , 𝑦0 given (10.7)

Regarding the parameters,
• 𝛽 ∈ (0, 1) is a discount factor
• 𝛾 > 0 measures the cost of adjusting the rate of output

Regarding timing, the firm observes 𝑝𝑡 and 𝑦𝑡 when it chooses 𝑦𝑡+1 at time 𝑡.
To state the firm’s optimization problem completely requires that we specify dynamics for all state variables.
This includes ones that the firm cares about but does not control like 𝑝𝑡.
We turn to this problem now.

Prices and Aggregate Output

In view of (10.5), the firm’s incentive to forecast the market price translates into an incentive to forecast aggregate output
𝑌𝑡.
Aggregate output depends on the choices of other firms.

The output 𝑦𝑡(𝜔) of a single firm 𝜔 has a negligible effect on aggregate output ∫1
0 𝑦𝑡(𝜔)𝑑𝜔.

That justifies firms in regarding their forecasts of aggregate output as being unaffected by their own output decisions.

Representative Firm’s Beliefs

We suppose the firm believes that market-wide output 𝑌𝑡 follows the law of motion

𝑌𝑡+1 = 𝐻(𝑌𝑡) (10.8)

where 𝑌0 is a known initial condition.
The belief function 𝐻 is an equilibrium object, and hence remains to be determined.

Optimal Behavior Given Beliefs

For now, let’s fix a particular belief 𝐻 in (10.8) and investigate the firm’s response to it.
Let 𝑣 be the optimal value function for the firm’s problem given 𝐻 .
The value function satisfies the Bellman equation

𝑣(𝑦, 𝑌) = max
𝑦′

{𝑎0𝑦 − 𝑎1𝑦𝑌 − 𝛾(𝑦′ − 𝑦)2

2 + 𝛽𝑣(𝑦′, 𝐻(𝑌))} (10.9)

Let’s denote the firm’s optimal policy function by ℎ, so that

𝑦𝑡+1 = ℎ(𝑦𝑡, 𝑌𝑡) (10.10)

where

ℎ(𝑦, 𝑌) ∶= argmax𝑦′ {𝑎0𝑦 − 𝑎1𝑦𝑌 − 𝛾(𝑦′ − 𝑦)2

2 + 𝛽𝑣(𝑦′, 𝐻(𝑌))} (10.11)

Evidently 𝑣 and ℎ both depend on 𝐻 .

10.2. Rational Expectations Equilibrium 185

Equilibrium Models

Characterization with First-Order Necessary Conditions

In what follows it will be helpful to have a second characterization of ℎ, based on first-order conditions.
The first-order necessary condition for choosing 𝑦′ is

−𝛾(𝑦′ − 𝑦) + 𝛽𝑣𝑦(𝑦′, 𝐻(𝑌)) = 0 (10.12)

An important useful envelope result of Benveniste-Scheinkman [Benveniste and Scheinkman, 1979] implies that to dif-
ferentiate 𝑣 with respect to 𝑦 we can naively differentiate the right side of (10.9), giving

𝑣𝑦(𝑦, 𝑌) = 𝑎0 − 𝑎1𝑌 + 𝛾(𝑦′ − 𝑦)

Substituting this equation into (10.12) gives the Euler equation

−𝛾(𝑦𝑡+1 − 𝑦𝑡) + 𝛽[𝑎0 − 𝑎1𝑌𝑡+1 + 𝛾(𝑦𝑡+2 − 𝑦𝑡+1)] = 0 (10.13)

The firm optimally sets an output path that satisfies (10.13), taking (10.8) as given, and subject to
• the initial conditions for (𝑦0, 𝑌0).
• the terminal condition lim𝑡→∞ 𝛽𝑡𝑦𝑡𝑣𝑦(𝑦𝑡, 𝑌𝑡) = 0.

This last condition is called the transversality condition, and acts as a first-order necessary condition “at infinity”.
A representative firm’s decision rule solves the difference equation (10.13) subject to the given initial condition 𝑦0 and the
transversality condition.
Note that solving the Bellman equation (10.9) for 𝑣 and then ℎ in (10.11) yields a decision rule that automatically imposes
both the Euler equation (10.13) and the transversality condition.

The Actual Law of Motion for Output

As we’ve seen, a given belief translates into a particular decision rule ℎ.
Recalling that in equilbrium 𝑌𝑡 = 𝑦𝑡, the actual law of motion for market-wide output is then

𝑌𝑡+1 = ℎ(𝑌𝑡, 𝑌𝑡) (10.14)

Thus, when firms believe that the law of motion for market-wide output is (10.8), their optimizing behavior makes the
actual law of motion be (10.14).

10.2.2 Definition of Rational Expectations Equilibrium

A rational expectations equilibrium or recursive competitive equilibrium of the model with adjustment costs is a decision
rule ℎ and an aggregate law of motion 𝐻 such that

1. Given belief 𝐻 , the map ℎ is the firm’s optimal policy function.
2. The law of motion 𝐻 satisfies 𝐻(𝑌) = ℎ(𝑌 , 𝑌) for all 𝑌 .

Thus, a rational expectations equilibrium equates the perceived and actual laws of motion (10.8) and (10.14).

186 Chapter 10. Rational Expectations Equilibrium

Equilibrium Models

Fixed Point Characterization

As we’ve seen, the firm’s optimum problem induces a mapping Φ from a perceived law of motion 𝐻 for market-wide
output to an actual law of motion Φ(𝐻).
The mapping Φ is the composition of two mappings, the first of which maps a perceived law of motion into a decision
rule via (10.9)–(10.11), the second of which maps a decision rule into an actual law via (10.14).
The 𝐻 component of a rational expectations equilibrium is a fixed point of Φ.

10.3 Computing an Equilibrium

Now let’s compute a rational expectations equilibrium.

10.3.1 Failure of Contractivity

Readers accustomed to dynamic programming arguments might try to address this problem by choosing some guess 𝐻0
for the aggregate law of motion and then iterating with Φ.
Unfortunately, the mapping Φ is not a contraction.
Indeed, there is no guarantee that direct iterations on Φ converge1.
There are examples in which these iterations diverge.
Fortunately, another method works here.
The method exploits a connection between equilibrium and Pareto optimality expressed in the fundamental theorems of
welfare economics (see, e.g, [Mas-Colell et al., 1995]).
Lucas and Prescott [Lucas and Prescott, 1971] used this method to construct a rational expectations equilibrium.
Some details follow.

10.3.2 A Planning Problem Approach

Our plan of attack is to match the Euler equations of the market problem with those for a single-agent choice problem.
As we’ll see, this planning problem can be solved by LQ control (linear regulator).
Optimal quantities from the planning problem are rational expectations equilibrium quantities.
The rational expectations equilibrium price can be obtained as a shadow price in the planning problem.
We first compute a sum of consumer and producer surplus at time 𝑡

𝑠(𝑌𝑡, 𝑌𝑡+1) ∶= ∫
𝑌𝑡

0
(𝑎0 − 𝑎1𝑥) 𝑑𝑥 − 𝛾(𝑌𝑡+1 − 𝑌𝑡)2

2 (10.15)

The first term is the area under the demand curve, while the second measures the social costs of changing output.
1 A literature that studies whether models populated with agents who learn can converge to rational expectations equilibria features iterations on a

modification of the mapping Φ that can be approximated as 𝛾Φ + (1 − 𝛾)𝐼. Here 𝐼 is the identity operator and 𝛾 ∈ (0, 1) is a relaxation parameter.
See [Marcet and Sargent, 1989] and [Evans and Honkapohja, 2001] for statements and applications of this approach to establish conditions under which
collections of adaptive agents who use least squares learning to converge to a rational expectations equilibrium.

10.3. Computing an Equilibrium 187

https://dle.quantecon.org/lqcontrol.html

Equilibrium Models

The planning problem is to choose a production plan {𝑌𝑡} to maximize
∞

∑
𝑡=0

𝛽𝑡𝑠(𝑌𝑡, 𝑌𝑡+1)

subject to an initial condition for 𝑌0.

10.3.3 Solution of Planning Problem

Evaluating the integral in (10.15) yields the quadratic form 𝑎0𝑌𝑡 − 𝑎1𝑌 2
𝑡 /2.

As a result, the Bellman equation for the planning problem is

𝑉 (𝑌) = max
𝑌 ′

{𝑎0𝑌 − 𝑎1
2 𝑌 2 − 𝛾(𝑌 ′ − 𝑌)2

2 + 𝛽𝑉 (𝑌 ′)} (10.16)

The associated first-order condition is

−𝛾(𝑌 ′ − 𝑌) + 𝛽𝑉 ′(𝑌 ′) = 0 (10.17)

Applying the same Benveniste-Scheinkman formula gives

𝑉 ′(𝑌) = 𝑎0 − 𝑎1𝑌 + 𝛾(𝑌 ′ − 𝑌)

Substituting this into equation (10.17) and rearranging leads to the Euler equation

𝛽𝑎0 + 𝛾𝑌𝑡 − [𝛽𝑎1 + 𝛾(1 + 𝛽)]𝑌𝑡+1 + 𝛾𝛽𝑌𝑡+2 = 0 (10.18)

10.3.4 Key Insight

Return to equation (10.13) and set 𝑦𝑡 = 𝑌𝑡 for all 𝑡.
A small amount of algebra will convince you that when 𝑦𝑡 = 𝑌𝑡, equations (10.18) and (10.13) are identical.
Thus, the Euler equation for the planning problem matches the second-order difference equation that we derived by

1. finding the Euler equation of the representative firm and
2. substituting into it the expression 𝑌𝑡 = 𝑦𝑡 that “makes the representative firm be representative”.

If it is appropriate to apply the same terminal conditions for these two difference equations, which it is, then we have
verified that a solution of the planning problem is also a rational expectations equilibrium quantity sequence.
It follows that for this example we can compute equilibrium quantities by forming the optimal linear regulator problem
corresponding to the Bellman equation (10.16).
The optimal policy function for the planning problem is the aggregate law of motion 𝐻 that the representative firm faces
within a rational expectations equilibrium.

Structure of the Law of Motion

As you are asked to show in the exercises, the fact that the planner’s problem is an LQ control problem implies an optimal
policy — and hence aggregate law of motion — taking the form

𝑌𝑡+1 = 𝜅0 + 𝜅1𝑌𝑡 (10.19)

for some parameter pair 𝜅0, 𝜅1.

188 Chapter 10. Rational Expectations Equilibrium

Equilibrium Models

Now that we know the aggregate law of motion is linear, we can see from the firm’s Bellman equation (10.9) that the
firm’s problem can also be framed as an LQ problem.
As you’re asked to show in the exercises, the LQ formulation of the firm’s problem implies a law of motion that looks as
follows

𝑦𝑡+1 = ℎ0 + ℎ1𝑦𝑡 + ℎ2𝑌𝑡 (10.20)

Hence a rational expectations equilibrium will be defined by the parameters (𝜅0, 𝜅1, ℎ0, ℎ1, ℎ2) in (10.19)–(10.20).

10.4 Exercises

Exercise 10.4.1
Consider the firm problem described above.
Let the firm’s belief function 𝐻 be as given in (10.19).
Formulate the firm’s problem as a discounted optimal linear regulator problem, being careful to describe all of the objects
needed.
Use the class LQ from the QuantEcon.py package to solve the firm’s problem for the following parameter values:

𝑎0 = 100, 𝑎1 = 0.05, 𝛽 = 0.95, 𝛾 = 10, 𝜅0 = 95.5, 𝜅1 = 0.95

Express the solution of the firm’s problem in the form (10.20) and give the values for each ℎ𝑗.
If there were a unit measure of identical competitive firms all behaving according to (10.20), what would (10.20) imply
for the actual law of motion (10.8) for market supply.

Solution to Exercise 10.4.1
To map a problem into a discounted optimal linear control problem, we need to define

• state vector 𝑥𝑡 and control vector 𝑢𝑡

• matrices 𝐴, 𝐵, 𝑄, 𝑅 that define preferences and the law of motion for the state
For the state and control vectors, we choose

𝑥𝑡 = ⎡⎢
⎣

𝑦𝑡
𝑌𝑡
1

⎤⎥
⎦

, 𝑢𝑡 = 𝑦𝑡+1 − 𝑦𝑡

For 𝐵, 𝑄, 𝑅 we set

𝐴 = ⎡⎢
⎣

1 0 0
0 𝜅1 𝜅0
0 0 1

⎤⎥
⎦

, 𝐵 = ⎡⎢
⎣

1
0
0
⎤⎥
⎦

, 𝑅 = ⎡⎢
⎣

0 𝑎1/2 −𝑎0/2
𝑎1/2 0 0

−𝑎0/2 0 0
⎤⎥
⎦

, 𝑄 = 𝛾/2

By multiplying out you can confirm that
• 𝑥′

𝑡𝑅𝑥𝑡 + 𝑢′
𝑡𝑄𝑢𝑡 = −𝑟𝑡

• 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

10.4. Exercises 189

http://quantecon.org/quantecon-py
https://python.quantecon.org/lqcontrol.html

Equilibrium Models

We’ll use the module lqcontrol.py to solve the firm’s problem at the stated parameter values.
This will return an LQ policy 𝐹 with the interpretation 𝑢𝑡 = −𝐹𝑥𝑡, or

𝑦𝑡+1 − 𝑦𝑡 = −𝐹0𝑦𝑡 − 𝐹1𝑌𝑡 − 𝐹2

Matching parameters with 𝑦𝑡+1 = ℎ0 + ℎ1𝑦𝑡 + ℎ2𝑌𝑡 leads to

ℎ0 = −𝐹2, ℎ1 = 1 − 𝐹0, ℎ2 = −𝐹1

Here’s our solution

Model parameters

a0 = 100
a1 = 0.05
β = 0.95
γ = 10.0

Beliefs

κ0 = 95.5
κ1 = 0.95

Formulate the LQ problem

A = np.array([[1, 0, 0], [0, κ1, κ0], [0, 0, 1]])
B = np.array([1, 0, 0])
B.shape = 3, 1
R = np.array([[0, a1/2, -a0/2], [a1/2, 0, 0], [-a0/2, 0, 0]])
Q = 0.5 * γ

Solve for the optimal policy

lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
F = F.flatten()
out1 = f"F = [{F[0]:.3f}, {F[1]:.3f}, {F[2]:.3f}]"
h0, h1, h2 = -F[2], 1 - F[0], -F[1]
out2 = f"(h0, h1, h2) = ({h0:.3f}, {h1:.3f}, {h2:.3f})"

print(out1)
print(out2)

F = [-0.000, 0.046, -96.949]
(h0, h1, h2) = (96.949, 1.000, -0.046)

The implication is that

𝑦𝑡+1 = 96.949 + 𝑦𝑡 − 0.046 𝑌𝑡

For the case 𝑛 > 1, recall that 𝑌𝑡 = 𝑛𝑦𝑡, which, combined with the previous equation, yields

𝑌𝑡+1 = 𝑛 (96.949 + 𝑦𝑡 − 0.046 𝑌𝑡) = 𝑛96.949 + (1 − 𝑛0.046)𝑌𝑡

Exercise 10.4.2

190 Chapter 10. Rational Expectations Equilibrium

Equilibrium Models

Consider the following 𝜅0, 𝜅1 pairs as candidates for the aggregate law of motion component of a rational expectations
equilibrium (see (10.19)).
Extending the program that you wrote for Exercise 10.4.1, determine which if any satisfy the definition of a rational
expectations equilibrium

• (94.0886298678, 0.923409232937)
• (93.2119845412, 0.984323478873)
• (95.0818452486, 0.952459076301)

Describe an iterative algorithm that uses the program that you wrote for Exercise 10.4.1 to compute a rational expectations
equilibrium.
(You are not being asked actually to use the algorithm you are suggesting)

Solution to Exercise 10.4.2
To determine whether a 𝜅0, 𝜅1 pair forms the aggregate law of motion component of a rational expectations equilibrium,
we can proceed as follows:

• Determine the corresponding firm law of motion 𝑦𝑡+1 = ℎ0 + ℎ1𝑦𝑡 + ℎ2𝑌𝑡.
• Test whether the associated aggregate law :𝑌𝑡+1 = 𝑛ℎ(𝑌𝑡/𝑛, 𝑌𝑡) evaluates to 𝑌𝑡+1 = 𝜅0 + 𝜅1𝑌𝑡.

In the second step, we can use 𝑌𝑡 = 𝑛𝑦𝑡 = 𝑦𝑡, so that 𝑌𝑡+1 = 𝑛ℎ(𝑌𝑡/𝑛, 𝑌𝑡) becomes

𝑌𝑡+1 = ℎ(𝑌𝑡, 𝑌𝑡) = ℎ0 + (ℎ1 + ℎ2)𝑌𝑡

Hence to test the second step we can test 𝜅0 = ℎ0 and 𝜅1 = ℎ1 + ℎ2.
The following code implements this test

candidates = ((94.0886298678, 0.923409232937),
(93.2119845412, 0.984323478873),
(95.0818452486, 0.952459076301))

for κ0, κ1 in candidates:

Form the associated law of motion
A = np.array([[1, 0, 0], [0, κ1, κ0], [0, 0, 1]])

Solve the LQ problem for the firm
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
F = F.flatten()
h0, h1, h2 = -F[2], 1 - F[0], -F[1]

Test the equilibrium condition
if np.allclose((κ0, κ1), (h0, h1 + h2)):

print(f'Equilibrium pair = {κ0}, {κ1}')
print('f(h0, h1, h2) = {h0}, {h1}, {h2}')
break

Equilibrium pair = 95.0818452486, 0.952459076301
f(h0, h1, h2) = {h0}, {h1}, {h2}

10.4. Exercises 191

Equilibrium Models

The output tells us that the answer is pair (iii), which implies (ℎ0, ℎ1, ℎ2) = (95.0819, 1.0000, −.0475).
(Notice we use np.allclose to test equality of floating-point numbers, since exact equality is too strict).
Regarding the iterative algorithm, one could loop from a given (𝜅0, 𝜅1) pair to the associated firm law and then to a new
(𝜅0, 𝜅1) pair.
This amounts to implementing the operator Φ described in the lecture.
(There is in general no guarantee that this iterative process will converge to a rational expectations equilibrium)

Exercise 10.4.3
Recall the planner’s problem described above

1. Formulate the planner’s problem as an LQ problem.
2. Solve it using the same parameter values in exercise 1

• 𝑎0 = 100, 𝑎1 = 0.05, 𝛽 = 0.95, 𝛾 = 10
3. Represent the solution in the form 𝑌𝑡+1 = 𝜅0 + 𝜅1𝑌𝑡.
4. Compare your answer with the results from exercise 2.

Solution to Exercise 10.4.3
We are asked to write the planner problem as an LQ problem.
For the state and control vectors, we choose

𝑥𝑡 = [𝑌𝑡
1] , 𝑢𝑡 = 𝑌𝑡+1 − 𝑌𝑡

For the LQ matrices, we set

𝐴 = [1 0
0 1] , 𝐵 = [1

0] , 𝑅 = [𝑎1/2 −𝑎0/2
−𝑎0/2 0] , 𝑄 = 𝛾/2

By multiplying out you can confirm that
• 𝑥′

𝑡𝑅𝑥𝑡 + 𝑢′
𝑡𝑄𝑢𝑡 = −𝑠(𝑌𝑡, 𝑌𝑡+1)

• 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

By obtaining the optimal policy and using 𝑢𝑡 = −𝐹𝑥𝑡 or

𝑌𝑡+1 − 𝑌𝑡 = −𝐹0𝑌𝑡 − 𝐹1

we can obtain the implied aggregate law of motion via 𝜅0 = −𝐹1 and 𝜅1 = 1 − 𝐹0.
The Python code to solve this problem is below:

Formulate the planner's LQ problem

A = np.array([[1, 0], [0, 1]])
B = np.array([[1], [0]])
R = np.array([[a1 / 2, -a0 / 2], [-a0 / 2, 0]])
Q = γ / 2

(continues on next page)

192 Chapter 10. Rational Expectations Equilibrium

Equilibrium Models

(continued from previous page)

Solve for the optimal policy

lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()

Print the results

F = F.flatten()
κ0, κ1 = -F[1], 1 - F[0]
print(κ0, κ1)

95.08187459215002 0.9524590627039248

The output yields the same (𝜅0, 𝜅1) pair obtained as an equilibrium from the previous exercise.

Exercise 10.4.4
A monopolist faces the industry demand curve (10.5) and chooses {𝑌𝑡} to maximize ∑∞

𝑡=0 𝛽𝑡𝑟𝑡 where

𝑟𝑡 = 𝑝𝑡𝑌𝑡 − 𝛾(𝑌𝑡+1 − 𝑌𝑡)2

2
Formulate this problem as an LQ problem.
Compute the optimal policy using the same parameters as Exercise 10.4.2.
In particular, solve for the parameters in

𝑌𝑡+1 = 𝑚0 + 𝑚1𝑌𝑡

Compare your results with Exercise 10.4.2 – comment.

Solution to Exercise 10.4.4
The monopolist’s LQ problem is almost identical to the planner’s problem from the previous exercise, except that

𝑅 = [𝑎1 −𝑎0/2
−𝑎0/2 0]

The problem can be solved as follows

A = np.array([[1, 0], [0, 1]])
B = np.array([[1], [0]])
R = np.array([[a1, -a0 / 2], [-a0 / 2, 0]])
Q = γ / 2

lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()

F = F.flatten()
m0, m1 = -F[1], 1 - F[0]
print(m0, m1)

10.4. Exercises 193

Equilibrium Models

73.47294403502818 0.9265270559649701

We see that the law of motion for the monopolist is approximately 𝑌𝑡+1 = 73.4729 + 0.9265𝑌𝑡.
In the rational expectations case, the law of motion was approximately 𝑌𝑡+1 = 95.0818 + 0.9525𝑌𝑡.
One way to compare these two laws of motion is by their fixed points, which give long-run equilibrium output in each
case.
For laws of the form 𝑌𝑡+1 = 𝑐0 + 𝑐1𝑌𝑡, the fixed point is 𝑐0/(1 − 𝑐1).
If you crunch the numbers, you will see that the monopolist adopts a lower long-run quantity than obtained by the com-
petitive market, implying a higher market price.
This is analogous to the elementary static-case results

194 Chapter 10. Rational Expectations Equilibrium

CHAPTER

ELEVEN

STABILITY IN LINEAR RATIONAL EXPECTATIONS MODELS

Contents

• Stability in Linear Rational Expectations Models

– Overview

– Linear Difference Equations

– Illustration: Cagan’s Model

– Some Python Code

– Alternative Code

– Another Perspective

– Log money Supply Feeds Back on Log Price Level

– Big 𝑃 , Little 𝑝 Interpretation
– Fun with SymPy

In addition to what’s in Anaconda, this lecture deploys the following libraries:

!pip install quantecon

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
import quantecon as qe
from sympy import init_printing, symbols, Matrix
init_printing()

195

Equilibrium Models

11.1 Overview

This lecture studies stability in the context of an elementary rational expectations model.
We study a rational expectations version of Philip Cagan’s model [Cagan, 1956] linking the price level to the money
supply.
Cagan did not use a rational expectations version of his model, but Sargent [Sargent, 1977] did.
We study a rational expectations version of this model because it is intrinsically interesting and because it has a mathe-
matical structure that appears in virtually all linear rational expectations model, namely, that a key endogenous variable
equals a mathematical expectation of a geometric sum of future values of another variable.
The model determines the price level or rate of inflation as a function of the money supply or the rate of change in the
money supply.
In this lecture, we’ll encounter:

• a convenient formula for the expectation of geometric sum of future values of a variable
• a way of solving an expectational difference equation by mapping it into a vector first-order difference equation and
appropriately manipulating an eigen decomposition of the transition matrix in order to impose stability

• a way to use a Big 𝐾, little 𝑘 argument to allow apparent feedback from endogenous to exogenous variables within
a rational expectations equilibrium

• a use of eigenvector decompositions of matrices that allowed Blanchard and Khan (1981) [Blanchard and Kahn,
1980] and Whiteman (1983) [Whiteman, 1983] to solve a class of linear rational expectations models

• how to use SymPy to get analytical formulas for some key objects comprising a rational expectations equilibrium
Matrix decompositions employed here are described in more depth in this lecture Lagrangian formulations.
We formulate a version of Cagan’s model under rational expectations as an expectational difference equation whose
solution is a rational expectations equilibrium.
We’ll start this lecture with a quick review of deterministic (i.e., non-random) first-order and second-order linear difference
equations.

11.2 Linear Difference Equations

We’ll use the backward shift or lag operator 𝐿.
The lag operator 𝐿 maps a sequence {𝑥𝑡}∞

𝑡=0 into the sequence {𝑥𝑡−1}∞
𝑡=0

We’ll deploy 𝐿 by using the equality 𝐿𝑥𝑡 ≡ 𝑥𝑡−1 in algebraic expressions.
Further, the inverse 𝐿−1 of the lag operator is the forward shift operator.
We’ll often use the equality 𝐿−1𝑥𝑡 ≡ 𝑥𝑡+1 below.
The algebra of lag and forward shift operators can simplify representing and solving linear difference equations.

196 Chapter 11. Stability in Linear Rational Expectations Models

https://dle.quantecon.org/lagrangian_lqdp.html

Equilibrium Models

11.2.1 First Order

We want to solve a linear first-order scalar difference equation.
Let |𝜆| < 1 and let {𝑢𝑡}∞

𝑡=−∞ be a bounded sequence of scalar real numbers.
Let 𝐿 be the lag operator defined by 𝐿𝑥𝑡 ≡ 𝑥𝑡−1 and let 𝐿−1 be the forward shift operator defined by 𝐿−1𝑥𝑡 ≡ 𝑥𝑡+1.
Then

(1 − 𝜆𝐿)𝑦𝑡 = 𝑢𝑡, ∀𝑡 (11.1)

has solutions

𝑦𝑡 = (1 − 𝜆𝐿)−1𝑢𝑡 + 𝑘𝜆𝑡 (11.2)

or

𝑦𝑡 =
∞

∑
𝑗=0

𝜆𝑗𝑢𝑡−𝑗 + 𝑘𝜆𝑡

for any real number 𝑘.
You can verify this fact by applying (1 − 𝜆𝐿) to both sides of equation (11.2) and noting that (1 − 𝜆𝐿)𝜆𝑡 = 0.
To pin down 𝑘 we need one condition imposed from outside (e.g., an initial or terminal condition) on the path of 𝑦.
Now let |𝜆| > 1.
Rewrite equation (11.1) as

𝑦𝑡−1 = 𝜆−1𝑦𝑡 − 𝜆−1𝑢𝑡, ∀𝑡 (11.3)

or

(1 − 𝜆−1𝐿−1)𝑦𝑡 = −𝜆−1𝑢𝑡+1. (11.4)

A solution is

𝑦𝑡 = −𝜆−1 (1
1 − 𝜆−1𝐿−1) 𝑢𝑡+1 + 𝑘𝜆𝑡 (11.5)

for any 𝑘.
To verify that this is a solution, check the consequences of operating on both sides of equation (11.5) by (1 − 𝜆𝐿) and
compare to equation (11.1).
For any bounded {𝑢𝑡} sequence, solution (11.2) exists for |𝜆| < 1 because the distributed lag in 𝑢 converges.
Solution (11.5) exists when |𝜆| > 1 because the distributed lead in 𝑢 converges.
When |𝜆| > 1, the distributed lag in 𝑢 in (11.2) may diverge, in which case a solution of this form does not exist.
The distributed lead in 𝑢 in (11.5) need not converge when |𝜆| < 1.

11.2.2 Second Order

Now consider the second order difference equation

(1 − 𝜆1𝐿)(1 − 𝜆2𝐿)𝑦𝑡+1 = 𝑢𝑡 (11.6)

11.2. Linear Difference Equations 197

Equilibrium Models

where {𝑢𝑡} is a bounded sequence, 𝑦0 is an initial condition, |𝜆1| < 1 and |𝜆2| > 1.
We seek a bounded sequence {𝑦𝑡}∞

𝑡=0 that satisfies (11.6). Using insights from our analysis of the first-order equation,
operate on both sides of (11.6) by the forward inverse of (1 − 𝜆2𝐿) to rewrite equation (11.6) as

(1 − 𝜆1𝐿)𝑦𝑡+1 = − 𝜆−1
2

1 − 𝜆−1
2 𝐿−1 𝑢𝑡+1

or

𝑦𝑡+1 = 𝜆1𝑦𝑡 − 𝜆−1
2

∞
∑
𝑗=0

𝜆−𝑗
2 𝑢𝑡+𝑗+1. (11.7)

Thus, we obtained equation (11.7) by solving a stable root (in this case 𝜆1) backward, and an unstable root (in this case
𝜆2) forward.
Equation (11.7) has a form that we shall encounter often.

• 𝜆1𝑦𝑡 is called the feedback part

• − 𝜆−1
2

1−𝜆−1
2 𝐿−1 𝑢𝑡+1 is called the feedforward part

11.3 Illustration: Cagan’s Model

Now let’s use linear difference equations to represent and solve Sargent’s [Sargent, 1977] rational expectations version of
Cagan’s model [Cagan, 1956] that connects the price level to the public’s anticipations of future money supplies.
Cagan did not use a rational expectations version of his model, but Sargent [Sargent, 1977]
Let

• 𝑚𝑑
𝑡 be the log of the demand for money

• 𝑚𝑡 be the log of the supply of money
• 𝑝𝑡 be the log of the price level

It follows that 𝑝𝑡+1 − 𝑝𝑡 is the rate of inflation.
The logarithm of the demand for real money balances 𝑚𝑑

𝑡 − 𝑝𝑡 is an inverse function of the expected rate of inflation
𝑝𝑡+1 − 𝑝𝑡 for 𝑡 ≥ 0:

𝑚𝑑
𝑡 − 𝑝𝑡 = −𝛽(𝑝𝑡+1 − 𝑝𝑡), 𝛽 > 0

Equate the demand for log money 𝑚𝑑
𝑡 to the supply of log money 𝑚𝑡 in the above equation and rearrange to deduce that

the logarithm of the price level 𝑝𝑡 is related to the logarithm of the money supply 𝑚𝑡 by

𝑝𝑡 = (1 − 𝜆)𝑚𝑡 + 𝜆𝑝𝑡+1 (11.8)

where 𝜆 ≡ 𝛽
1+𝛽 ∈ (0, 1).

(We note that the characteristic polynomial if 1 − 𝜆−1𝑧−1 = 0 so that the zero of the characteristic polynomial in this
case is 𝜆 ∈ (0, 1) which here is inside the unit circle.)
Solving the first order difference equation (11.8) forward gives

𝑝𝑡 = (1 − 𝜆)
∞

∑
𝑗=0

𝜆𝑗𝑚𝑡+𝑗, (11.9)

198 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

which is the unique stable solution of difference equation (11.8) among a class of more general solutions

𝑝𝑡 = (1 − 𝜆)
∞

∑
𝑗=0

𝜆𝑗𝑚𝑡+𝑗 + 𝑐𝜆−𝑡 (11.10)

that is indexed by the real number 𝑐 ∈ R.
Because we want to focus on stable solutions, we set 𝑐 = 0.
Equation (11.10) attributes perfect foresight about the money supply sequence to the holders of real balances.
We begin by assuming that the log of the money supply is exogenous in the sense that it is an autonomous process that
does not feed back on the log of the price level.
In particular, we assume that the log of the money supply is described by the linear state space system

𝑚𝑡 = 𝐺𝑥𝑡
𝑥𝑡+1 = 𝐴𝑥𝑡

(11.11)

where 𝑥𝑡 is an 𝑛 × 1 vector that does not include 𝑝𝑡 or lags of 𝑝𝑡, 𝐴 is an 𝑛 × 𝑛 matrix with eigenvalues that are less than
𝜆−1 in absolute values, and 𝐺 is a 1 × 𝑛 selector matrix.
Variables appearing in the vector 𝑥𝑡 contain information that might help predict future values of the money supply.
We’ll start with an example in which 𝑥𝑡 includes only 𝑚𝑡, possibly lagged values of 𝑚, and a constant.
An example of such an {𝑚𝑡} process that fits info state space system (11.11) is one that satisfies the second order linear
difference equation

𝑚𝑡+1 = 𝛼 + 𝜌1𝑚𝑡 + 𝜌2𝑚𝑡−1

where the zeros of the characteristic polynomial (1 − 𝜌1𝑧 − 𝜌2𝑧2) are strictly greater than 1 in modulus.
(Please see this QuantEcon lecture for more about characteristic polynomials and their role in solving linear difference
equations.)
We seek a stable or non-explosive solution of the difference equation (11.8) that obeys the system comprised of (11.8)-
(11.11).
By stable or non-explosive, we mean that neither 𝑚𝑡 nor 𝑝𝑡 diverges as 𝑡 → +∞.
This requires that we shut down the term 𝑐𝜆−𝑡 in equation (11.10) above by setting 𝑐 = 0
The solution we are after is

𝑝𝑡 = 𝐹𝑥𝑡 (11.12)

where

𝐹 = (1 − 𝜆)𝐺(𝐼 − 𝜆𝐴)−1 (11.13)

Note: As mentioned above, an explosive solution of difference equation (11.8) can be constructed by adding to the right
hand of (11.12) a sequence 𝑐𝜆−𝑡 where 𝑐 is an arbitrary positive constant.

11.3. Illustration: Cagan’s Model 199

https://dynamics.quantecon.org/samuelson.html

Equilibrium Models

11.4 Some Python Code

We’ll construct examples that illustrate (11.11).
Our first example takes as the law of motion for the log money supply the second order difference equation

𝑚𝑡+1 = 𝛼 + 𝜌1𝑚𝑡 + 𝜌2𝑚𝑡−1 (11.14)

that is parameterized by 𝜌1, 𝜌2, 𝛼
To capture this parameterization with system (11.9) we set

𝑥𝑡 = ⎡⎢
⎣

1
𝑚𝑡

𝑚𝑡−1

⎤⎥
⎦

, 𝐴 = ⎡⎢
⎣

1 0 0
𝛼 𝜌1 𝜌2
0 1 0

⎤⎥
⎦

, 𝐺 = [0 1 0]

Here is Python code

λ = .9

α = 0
ρ1 = .9
ρ2 = .05

A = np.array([[1, 0, 0],
[α, ρ1, ρ2],
[0, 1, 0]])

G = np.array([[0, 1, 0]])

The matrix 𝐴 has one eigenvalue equal to unity.
It is associated with the 𝐴11 component that captures a constant component of the state 𝑥𝑡.
We can verify that the two eigenvalues of 𝐴 not associated with the constant in the state 𝑥𝑡 are strictly less than unity in
modulus.

eigvals = np.linalg.eigvals(A)
print(eigvals)

[-0.05249378 0.95249378 1.]

(abs(eigvals) <= 1).all()

True

Now let’s compute 𝐹 in formulas (11.12) and (11.13).

compute the solution, i.e. forumula (3)
F = (1 - λ) * G @ np.linalg.inv(np.eye(A.shape[0]) - λ * A)
print("F= ",F)

F= [[0. 0.66889632 0.03010033]]

Now let’s simulate paths of 𝑚𝑡 and 𝑝𝑡 starting from an initial value 𝑥0.

200 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

set the initial state
x0 = np.array([1, 1, 0])

T = 100 # length of simulation

m_seq = np.empty(T+1)
p_seq = np.empty(T+1)

m_seq[0] = G @ x0
p_seq[0] = F @ x0

simulate for T periods
x_old = x0
for t in range(T):

x = A @ x_old

m_seq[t+1] = G @ x
p_seq[t+1] = F @ x

x_old = x

/tmp/ipykernel_6712/4040936680.py:9: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m_seq[0] = G @ x0

/tmp/ipykernel_6712/4040936680.py:10: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
p_seq[0] = F @ x0

/tmp/ipykernel_6712/4040936680.py:18: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
m_seq[t+1] = G @ x

/tmp/ipykernel_6712/4040936680.py:19: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
p_seq[t+1] = F @ x

plt.figure()
plt.plot(range(T+1), m_seq, label='m_t')
plt.plot(range(T+1), p_seq, label='p_t')
plt.xlabel('t')
plt.title(f'λ={λ}, α={α}, $ρ_1$={ρ1}, $ρ_2$={ρ2}')
plt.legend()
plt.show()

11.4. Some Python Code 201

Equilibrium Models

In the above graph, why is the log of the price level always less than the log of the money supply?
Because

• according to equation (11.9), 𝑝𝑡 is a geometric weighted average of current and future values of 𝑚𝑡, and
• it happens that in this example future 𝑚’s are always less than the current 𝑚

11.5 Alternative Code

We could also have run the simulation using the quantecon LinearStateSpace code.
The following code block performs the calculation with that code.

construct a LinearStateSpace instance

stack G and F
G_ext = np.vstack([G, F])

C = np.zeros((A.shape[0], 1))

ss = qe.LinearStateSpace(A, C, G_ext, mu_0=x0)

T = 100

simulate using LinearStateSpace
x, y = ss.simulate(ts_length=T)

plot
plt.figure()
plt.plot(range(T), y[0,:], label='m_t')
plt.plot(range(T), y[1,:], label='p_t')
plt.xlabel('t')
plt.title(f'λ={λ}, α={α}, $ρ_1$={ρ1}, $ρ_2$={ρ2}')

(continues on next page)

202 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

(continued from previous page)

plt.legend()
plt.show()

11.5.1 Special Case

To simplify our presentation in ways that will let focus on an important idea, in the above second-order difference equation
(11.14) that governs 𝑚𝑡, we now set 𝛼 = 0, 𝜌1 = 𝜌 ∈ (−1, 1), and 𝜌2 = 0 so that the law of motion for 𝑚𝑡 becomes

𝑚𝑡+1 = 𝜌𝑚𝑡 (11.15)

and the state 𝑥𝑡 becomes

𝑥𝑡 = 𝑚𝑡.

Consequently, we can set 𝐺 = 1, 𝐴 = 𝜌 making our formula (11.13) for 𝐹 become

𝐹 = (1 − 𝜆)(1 − 𝜆𝜌)−1.

so that the log the log price level satisfies

𝑝𝑡 = 𝐹𝑚𝑡.

Please keep these formulas in mind as we investigate an alternative route to and interpretation of our formula for 𝐹 .

11.5. Alternative Code 203

Equilibrium Models

11.6 Another Perspective

Above, we imposed stability or non-explosiveness on the solution of the key difference equation (11.8) in Cagan’s model
by solving the unstable root of the characteristic polynomial forward.
To shed light on the mechanics involved in imposing stability on a solution of a potentially unstable system of linear
difference equations and to prepare the way for generalizations of our model in which the money supply is allowed to feed
back on the price level itself, we stack equations (11.8) and (11.15) to form the system

[𝑚𝑡+1
𝑝𝑡+1

] = [𝜌 0
−(1 − 𝜆)/𝜆 𝜆−1] [𝑚𝑡

𝑝𝑡
] (11.16)

or

𝑦𝑡+1 = 𝐻𝑦𝑡, 𝑡 ≥ 0 (11.17)

where

𝐻 = [𝜌 0
−(1 − 𝜆)/𝜆 𝜆−1] . (11.18)

Transition matrix 𝐻 has eigenvalues 𝜌 ∈ (0, 1) and 𝜆−1 > 1.
Because an eigenvalue of 𝐻 exceeds unity, if we iterate on equation (11.17) starting from an arbitrary initial vector
𝑦0 = [𝑚0

𝑝0
] with 𝑚0 > 0, 𝑝0 > 0, we discover that in general absolute values of both components of 𝑦𝑡 diverge toward

+∞ as 𝑡 → +∞.
To substantiate this claim, we can use the eigenvector matrix decomposition of 𝐻 that is available to us because the
eigenvalues of 𝐻 are distinct

𝐻 = 𝑄Λ𝑄−1.

Here Λ is a diagonal matrix of eigenvalues of 𝐻 and 𝑄 is a matrix whose columns are eigenvectors associated with the
corresponding eigenvalues.
Note that

𝐻𝑡 = 𝑄Λ𝑡𝑄−1

so that

𝑦𝑡 = 𝑄Λ𝑡𝑄−1𝑦0

For almost all initial vectors 𝑦0, the presence of the eigenvalue 𝜆−1 > 1 causes both components of 𝑦𝑡 to diverge in
absolute value to +∞.
To explore this outcome in more detail, we can use the following transformation

𝑦∗
𝑡 = 𝑄−1𝑦𝑡

that allows us to represent the dynamics in a way that isolates the source of the propensity of paths to diverge:

𝑦∗
𝑡+1 = Λ𝑡𝑦∗

𝑡

Staring at this equation indicates that unless

𝑦∗
0 = [𝑦∗

1,0
0] (11.19)

204 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

the path of 𝑦∗
𝑡 and therefore the paths of both components of 𝑦𝑡 = 𝑄𝑦∗

𝑡 will diverge in absolute value as 𝑡 → +∞. (We
say that the paths explode)
Equation (11.19) also leads us to conclude that there is a unique setting for the initial vector 𝑦0 for which both components
of 𝑦𝑡 do not diverge.
The required setting of 𝑦0 must evidently have the property that

𝑄𝑦0 = 𝑦∗
0 = [𝑦∗

1,0
0] .

But note that since 𝑦0 = [𝑚0
𝑝0

] and 𝑚0 is given to us an initial condition, 𝑝0 has to do all the adjusting to satisfy this
equation.
Sometimes this situation is described by saying that while 𝑚0 is truly a state variable, 𝑝0 is a jump variable that must
adjust at 𝑡 = 0 in order to satisfy the equation.
Thus, in a nutshell the unique value of the vector 𝑦0 for which the paths of 𝑦𝑡 do not diverge must have second component
𝑝0 that verifies equality (11.19) by setting the second component of 𝑦∗

0 equal to zero.

The component 𝑝0 of the initial vector 𝑦0 = [𝑚0
𝑝0

] must evidently satisfy

𝑄{2}𝑦0 = 0

where 𝑄{2} denotes the second row of 𝑄−1, a restriction that is equivalent to

𝑄21𝑚0 + 𝑄22𝑝0 = 0 (11.20)

where 𝑄𝑖𝑗 denotes the (𝑖, 𝑗) component of 𝑄−1.
Solving this equation for 𝑝0, we find

𝑝0 = −(𝑄22)−1𝑄21𝑚0. (11.21)

This is the unique stabilizing value of 𝑝0 expressed as a function of 𝑚0.

11.6.1 Refining the Formula

We can get an even more convenient formula for 𝑝0 that is cast in terms of components of 𝑄 instead of components of
𝑄−1.
To get this formula, first note that because (𝑄21 𝑄22) is the second row of the inverse of 𝑄 and because 𝑄−1𝑄 = 𝐼 , it
follows that

[𝑄21 𝑄22] [𝑄11
𝑄21

] = 0

which implies that

𝑄21𝑄11 + 𝑄22𝑄21 = 0.

Therefore,

−(𝑄22)−1𝑄21 = 𝑄21𝑄−1
11 .

So we can write

𝑝0 = 𝑄21𝑄−1
11 𝑚0. (11.22)

11.6. Another Perspective 205

Equilibrium Models

It can be verified that this formula replicates itself over time in the sense that

𝑝𝑡 = 𝑄21𝑄−1
11 𝑚𝑡. (11.23)

To implement formula (11.23), we want to compute 𝑄1 the eigenvector of 𝑄 associated with the stable eigenvalue 𝜌 of
𝑄.
By hand it can be verified that the eigenvector associated with the stable eigenvalue 𝜌 is proportional to

𝑄1 = [1 − 𝜆𝜌
1 − 𝜆] .

Notice that if we set 𝐴 = 𝜌 and 𝐺 = 1 in our earlier formula for 𝑝𝑡 we get

𝑝𝑡 = 𝐺(𝐼 − 𝜆𝐴)−1𝑚𝑡 = (1 − 𝜆)(1 − 𝜆𝜌)−1𝑚𝑡,

a formula that is equivalent with

𝑝𝑡 = 𝑄21𝑄−1
11 𝑚𝑡,

where

𝑄1 = [𝑄11
𝑄21

] .

11.6.2 Remarks about Feedback

We have expressed (11.16) in what superficially appears to be a form in which 𝑦𝑡+1 feeds back on 𝑦𝑡, even though what we
actually want to represent is that the component 𝑝𝑡 feeds forward on 𝑝𝑡+1, and through it, on future 𝑚𝑡+𝑗, 𝑗 = 0, 1, 2, ….

A tell-tale sign that we should look beyond its superficial “feedback” form is that 𝜆−1 > 1 so that the matrix 𝐻 in (11.16)
is unstable

• it has one eigenvalue 𝜌 that is less than one in modulus that does not imperil stability, but …
• it has a second eigenvalue 𝜆−1 that exceeds one in modulus and that makes 𝐻 an unstable matrix

We’ll keep these observations in mind as we turn now to a case in which the log money supply actually does feed back on
the log of the price level.

11.7 Log money Supply Feeds Back on Log Price Level

An arrangement of eigenvalues that split around unity, with one being below unity and another being greater than unity,
sometimes prevails when there is feedback from the log price level to the log money supply.
Let the feedback rule be

𝑚𝑡+1 = 𝜌𝑚𝑡 + 𝛿𝑝𝑡 (11.24)

where 𝜌 ∈ (0, 1) and where we shall now allow 𝛿 ≠ 0.
Warning: If things are to fit together as we wish to deliver a stable system for some initial value 𝑝0 that we want to
determine uniquely, 𝛿 cannot be too large.
The forward-looking equation (11.8) continues to describe equality between the demand and supply of money.

We assume that equations (11.8) and (11.24) govern 𝑦𝑡 ≡ [𝑚𝑡
𝑝𝑡

] for 𝑡 ≥ 0.

206 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

The transition matrix 𝐻 in the law of motion

𝑦𝑡+1 = 𝐻𝑦𝑡

now becomes

𝐻 = [𝜌 𝛿
−(1 − 𝜆)/𝜆 𝜆−1] .

We take 𝑚0 as a given initial condition and as before seek an initial value 𝑝0 that stabilizes the system in the sense that
𝑦𝑡 converges as 𝑡 → +∞.
Our approach is identical with the one followed above and is based on an eigenvalue decomposition in which, cross our
fingers, one eigenvalue exceeds unity and the other is less than unity in absolute value.
When 𝛿 ≠ 0 as we now assume, the eigenvalues of 𝐻 will no longer be 𝜌 ∈ (0, 1) and 𝜆−1 > 1
We’ll just calculate them and apply the same algorithm that we used above.
That algorithm remains valid so long as the eigenvalues split around unity as before.
Again we assume that 𝑚0 is an initial condition, but that 𝑝0 is not given but to be solved for.
Let’s write and execute some Python code that will let us explore how outcomes depend on 𝛿.

def construct_H(ρ, λ, δ):
"contruct matrix H given parameters."

H = np.empty((2, 2))
H[0, :] = ρ,δ
H[1, :] = - (1 - λ) / λ, 1 / λ

return H

def H_eigvals(ρ=.9, λ=.5, δ=0):
"compute the eigenvalues of matrix H given parameters."

construct H matrix
H = construct_H(ρ, λ, δ)

compute eigenvalues
eigvals = np.linalg.eigvals(H)

return eigvals

H_eigvals()

array([2. , 0.9])

Notice that a negative 𝛿 will not imperil the stability of the matrix 𝐻 , even if it has a big absolute value.

small negative δ
H_eigvals(δ=-0.05)

array([0.8562829, 2.0437171])

11.7. Log money Supply Feeds Back on Log Price Level 207

Equilibrium Models

large negative δ
H_eigvals(δ=-1.5)

array([0.10742784, 2.79257216])

A sufficiently small positive 𝛿 also causes no problem.

sufficiently small positive δ
H_eigvals(δ=0.05)

array([0.94750622, 1.95249378])

But a large enough positive 𝛿 makes both eigenvalues of 𝐻 strictly greater than unity in modulus.
For example,

H_eigvals(δ=0.2)

array([1.12984379, 1.77015621])

We want to study systems in which one eigenvalue exceeds unity in modulus while the other is less than unity in modulus,
so we avoid values of 𝛿 that are too.
That is, we want to avoid too much positive feedback from 𝑝𝑡 to 𝑚𝑡+1.

def magic_p0(m0, ρ=.9, λ=.5, δ=0):
"""
Use the magic formula (8) to compute the level of p0
that makes the system stable.
"""

H = construct_H(ρ, λ, δ)
eigvals, Q = np.linalg.eig(H)

find the index of the smaller eigenvalue
ind = 0 if eigvals[0] < eigvals[1] else 1

verify that the eigenvalue is less than unity
if eigvals[ind] > 1:

print("both eigenvalues exceed unity in modulus")

return None

p0 = Q[1, ind] / Q[0, ind] * m0

return p0

Let’s plot how the solution 𝑝0 changes as 𝑚0 changes for different settings of 𝛿.

m_range = np.arange(0.1, 2., 0.1)

for δ in [-0.05, 0, 0.05]:
plt.plot(m_range, [magic_p0(m0, δ=δ) for m0 in m_range], label=f"δ={δ}")

(continues on next page)

208 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

(continued from previous page)

plt.legend()

plt.xlabel("m_0")
plt.ylabel("p_0")
plt.show()

To look at things from a different angle, we can fix the initial value 𝑚0 and see how 𝑝0 changes as 𝛿 changes.

m0 = 1

δ_range = np.linspace(-0.05, 0.05, 100)
plt.plot(δ_range, [magic_p0(m0, δ=δ) for δ in δ_range])
plt.xlabel('δ')
plt.ylabel('p_0')
plt.title(f'm_0={m0}')
plt.show()

11.7. Log money Supply Feeds Back on Log Price Level 209

Equilibrium Models

Notice that when 𝛿 is large enough, both eigenvalues exceed unity in modulus, causing a stabilizing value of 𝑝0 not to
exist.

magic_p0(1, δ=0.2)

both eigenvalues exceed unity in modulus

11.8 Big 𝑃 , Little 𝑝 Interpretation

It is helpful to view our solutions of difference equations having feedback from the price level or inflation to money or the
rate of money creation in terms of the Big 𝐾, little 𝑘 idea discussed in Rational Expectations Models.
This will help us sort out what is taken as given by the decision makers who use the difference equation (11.9) to determine
𝑝𝑡 as a function of their forecasts of future values of 𝑚𝑡.
Let’s write the stabilizing solution that we have computed using the eigenvector decomposition of 𝐻 as 𝑃𝑡 = 𝐹 ∗𝑚𝑡,
where

𝐹 ∗ = 𝑄21𝑄−1
11 .

Then from 𝑃𝑡+1 = 𝐹 ∗𝑚𝑡+1 and 𝑚𝑡+1 = 𝜌𝑚𝑡 + 𝛿𝑃𝑡 we can deduce the recursion 𝑃𝑡+1 = 𝐹 ∗𝜌𝑚𝑡 + 𝐹 ∗𝛿𝑃𝑡 and create
the stacked system

[𝑚𝑡+1
𝑃𝑡+1

] = [𝜌 𝛿
𝐹 ∗𝜌 𝐹 ∗𝛿] [𝑚𝑡

𝑃𝑡
]

or

𝑥𝑡+1 = 𝐴𝑥𝑡

where 𝑥𝑡 = [𝑚𝑡
𝑃𝑡

].

210 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

Apply formula (11.13) for 𝐹 to deduce that

𝑝𝑡 = 𝐹 [𝑚𝑡
𝑃𝑡

] = 𝐹 [𝑚𝑡
𝐹 ∗𝑚𝑡

]

which implies that

𝑝𝑡 = [𝐹1 𝐹2] [𝑚𝑡
𝐹 ∗𝑚𝑡

] = 𝐹1𝑚𝑡 + 𝐹2𝐹 ∗𝑚𝑡

so that we can anticipate that

𝐹 ∗ = 𝐹1 + 𝐹2𝐹 ∗

We shall verify this equality in the next block of Python code that implements the following computations.
1. For the system with 𝛿 ≠ 0 so that there is feedback, we compute the stabilizing solution for 𝑝𝑡 in the form

𝑝𝑡 = 𝐹 ∗𝑚𝑡 where 𝐹 ∗ = 𝑄21𝑄−1
11 as above.

2. Recalling the system (11.11), (11.12), and (11.13) above, we define 𝑥𝑡 = [𝑚𝑡
𝑃𝑡

] and notice that it is Big 𝑃𝑡 and

not little 𝑝𝑡 here. Then we form 𝐴 and 𝐺 as 𝐴 = [𝜌 𝛿
𝐹 ∗𝜌 𝐹 ∗𝛿] and 𝐺 = [1 0] and we compute [𝐹1 𝐹2] ≡ 𝐹

from equation (11.13) above.
3. We compute 𝐹1 + 𝐹2𝐹 ∗ and compare it with 𝐹 ∗ and check for the anticipated equality.

set parameters
ρ = .9
λ = .5
δ = .05

solve for F_star
H = construct_H(ρ, λ, δ)
eigvals, Q = np.linalg.eig(H)

ind = 0 if eigvals[0] < eigvals[1] else 1
F_star = Q[1, ind] / Q[0, ind]
F_star

0.950124378879109

solve for F_check
A = np.empty((2, 2))
A[0, :] = ρ, δ
A[1, :] = F_star * A[0, :]

G = np.array([1, 0])

F_check= (1 - λ) * G @ np.linalg.inv(np.eye(2) - λ * A)
F_check

array([0.92755597, 0.02375311])

Compare 𝐹 ∗ with 𝐹1 + 𝐹2𝐹 ∗

11.8. Big 𝑃 , Little 𝑝 Interpretation 211

Equilibrium Models

F_check[0] + F_check[1] * F_star, F_star

(0.95012437887911, 0.950124378879109)

11.9 Fun with SymPy

This section is a gift for readers who have made it this far.
It puts SymPy to work on our model.
Thus, we use Sympy to compute some key objects comprising the eigenvector decomposition of 𝐻 .
We start by generating an 𝐻 with nonzero 𝛿.

λ, δ, ρ = symbols('λ, δ, ρ')

H1 = Matrix([[ρ,δ], [- (1 - λ) / λ, λ ** -1]])

H1

[𝜌 𝛿
𝜆−1

𝜆
1
𝜆

]

H1.eigenvals()

{𝜆𝜌 + 1
2𝜆 − √4𝛿𝜆2 − 4𝛿𝜆 + 𝜆2𝜌2 − 2𝜆𝜌 + 1

2𝜆 ∶ 1, 𝜆𝜌 + 1
2𝜆 + √4𝛿𝜆2 − 4𝛿𝜆 + 𝜆2𝜌2 − 2𝜆𝜌 + 1

2𝜆 ∶ 1}

H1.eigenvects()

⎡⎢
⎣

⎛⎜⎜
⎝

𝜆𝜌 + 1
2𝜆 − √4𝛿𝜆2 − 4𝛿𝜆 + 𝜆2𝜌2 − 2𝜆𝜌 + 1

2𝜆 , 1, ⎡⎢
⎣

⎡⎢
⎣

𝜆(𝜆𝜌+1
2𝜆 − √4𝛿𝜆2−4𝛿𝜆+𝜆2𝜌2−2𝜆𝜌+1

2𝜆)

𝜆−1 − 1
𝜆−1

1
⎤⎥
⎦

⎤⎥
⎦

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

𝜆𝜌 + 1
2𝜆 + √4𝛿𝜆2 − 4𝛿𝜆 + 𝜆2𝜌2 − 2𝜆𝜌 + 1

2𝜆 , 1, ⎡⎢
⎣

⎡⎢
⎣

𝜆(𝜆𝜌+1
2𝜆 + √4𝛿𝜆2−4𝛿𝜆+𝜆2𝜌2−2𝜆𝜌+1

2𝜆)

𝜆−1 − 1
𝜆−1

1
⎤⎥
⎦

⎤⎥
⎦

⎞⎟⎟
⎠

⎤⎥
⎦

Now let’s compute 𝐻 when 𝛿 is zero.

H2 = Matrix([[ρ,0], [- (1 - λ) / λ, λ ** -1]])

H2

[𝜌 0
𝜆−1

𝜆
1
𝜆

]

212 Chapter 11. Stability in Linear Rational Expectations Models

Equilibrium Models

H2.eigenvals()

{ 1
𝜆 ∶ 1, 𝜌 ∶ 1}

H2.eigenvects()

[(1
𝜆, 1, [[0

1]]) , (𝜌, 1, [[
𝜆𝜌−1
𝜆−1
1]])]

Below we do induce SymPy to do the following fun things for us analytically:
1. We compute the matrix 𝑄 whose first column is the eigenvector associated with 𝜌. and whose second column is

the eigenvector associated with 𝜆−1.
2. We use SymPy to compute the inverse 𝑄−1 of 𝑄 (both in symbols).
3. We use SymPy to compute 𝑄21𝑄−1

11 (in symbols).
4. Where 𝑄𝑖𝑗 denotes the (𝑖, 𝑗) component of 𝑄−1, we use SymPy to compute −(𝑄22)−1𝑄21 (again in symbols)

construct Q
vec = []
for i, (eigval, _, eigvec) in enumerate(H2.eigenvects()):

vec.append(eigvec[0])

if eigval == ρ:
ind = i

Q = vec[ind].col_insert(1, vec[1-ind])

Q

[
𝜆𝜌−1
𝜆−1 0
1 1]

𝑄−1

Q_inv = Q ** (-1)
Q_inv

[
𝜆−1

𝜆𝜌−1 0
1−𝜆

𝜆𝜌−1 1]

𝑄21𝑄−1
11

11.9. Fun with SymPy 213

Equilibrium Models

Q[1, 0] / Q[0, 0]

𝜆 − 1
𝜆𝜌 − 1

−(𝑄22)−1𝑄21

- Q_inv[1, 0] / Q_inv[1, 1]

− 1 − 𝜆
𝜆𝜌 − 1

214 Chapter 11. Stability in Linear Rational Expectations Models

CHAPTER

TWELVE

MARKOV PERFECT EQUILIBRIUM

Contents

• Markov Perfect Equilibrium

– Overview

– Background

– Linear Markov Perfect Equilibria

– Application

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

12.1 Overview

This lecture describes the concept of Markov perfect equilibrium.
Markov perfect equilibrium is a key notion for analyzing economic problems involving dynamic strategic interaction, and
a cornerstone of applied game theory.
In this lecture, we teach Markov perfect equilibrium by example.
We will focus on settings with

• two players
• quadratic payoff functions
• linear transition rules for the state

Other references include chapter 7 of [Ljungqvist and Sargent, 2018].
Let’s start with some standard imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
import quantecon as qe

215

Equilibrium Models

12.2 Background

Markov perfect equilibrium is a refinement of the concept of Nash equilibrium.
It is used to study settings where multiple decision-makers interact non-cooperatively over time, each pursuing its own
objective.
The agents in the model face a common state vector, the time path of which is influenced by – and influences – their
decisions.
In particular, the transition law for the state that confronts each agent is affected by decision rules of other agents.
Individual payoffmaximization requires that each agent solve a dynamic programming problem that includes this transition
law.
Markov perfect equilibrium prevails when no agent wishes to revise its policy, taking as given the policies of all other
agents.
Well known examples include

• Choice of price, output, location or capacity for firms in an industry (e.g., [Ericson and Pakes, 1995], [Ryan, 2012],
[Doraszelski and Satterthwaite, 2010]).

• Rate of extraction from a shared natural resource, such as a fishery (e.g., [Levhari and Mirman, 1980], [Van Long,
2011]).

Let’s examine a model of the first type.

12.2.1 Example: A Duopoly Model

Two firms are the only producers of a good, the demand for which is governed by a linear inverse demand function

𝑝 = 𝑎0 − 𝑎1(𝑞1 + 𝑞2) (12.1)

Here 𝑝 = 𝑝𝑡 is the price of the good, 𝑞𝑖 = 𝑞𝑖𝑡 is the output of firm 𝑖 = 1, 2 at time 𝑡 and 𝑎0 > 0, 𝑎1 > 0.
In (12.1) and what follows,

• the time subscript is suppressed when possible to simplify notation
• ̂𝑥 denotes a next period value of variable 𝑥

Each firm recognizes that its output affects total output and therefore the market price.
The one-period payoff function of firm 𝑖 is price times quantity minus adjustment costs:

𝜋𝑖 = 𝑝𝑞𝑖 − 𝛾(̂𝑞𝑖 − 𝑞𝑖)2, 𝛾 > 0, (12.2)

Substituting the inverse demand curve (12.1) into (12.2) lets us express the one-period payoff as

𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) = 𝑎0𝑞𝑖 − 𝑎1𝑞2
𝑖 − 𝑎1𝑞𝑖𝑞−𝑖 − 𝛾(̂𝑞𝑖 − 𝑞𝑖)2, (12.3)

where 𝑞−𝑖 denotes the output of the firm other than 𝑖.
The objective of the firm is to maximize ∑∞

𝑡=0 𝛽𝑡𝜋𝑖𝑡.
Firm 𝑖 chooses a decision rule that sets next period quantity ̂𝑞𝑖 as a function 𝑓𝑖 of the current state (𝑞𝑖, 𝑞−𝑖).
An essential aspect of a Markov perfect equilibrium is that each firm takes the decision rule of the other firm as known
and given.

216 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

Given 𝑓−𝑖, the Bellman equation of firm 𝑖 is
𝑣𝑖(𝑞𝑖, 𝑞−𝑖) = max

̂𝑞𝑖
{𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) + 𝛽𝑣𝑖(̂𝑞𝑖, 𝑓−𝑖(𝑞−𝑖, 𝑞𝑖))} (12.4)

Definition A Markov perfect equilibrium of the duopoly model is a pair of value functions (𝑣1, 𝑣2) and a pair of policy
functions (𝑓1, 𝑓2) such that, for each 𝑖 ∈ {1, 2} and each possible state,

• The value function 𝑣𝑖 satisfies Bellman equation (12.4).
• The maximizer on the right side of (12.4) equals 𝑓𝑖(𝑞𝑖, 𝑞−𝑖).

The adjective “Markov” denotes that the equilibrium decision rules depend only on the current values of the state variables,
not other parts of their histories.
“Perfect” means complete, in the sense that the equilibrium is constructed by backward induction and hence builds in
optimizing behavior for each firm at all possible future states.

• These include many states that will not be reached when we iterate forward on the pair of equilibrium strategies 𝑓𝑖
starting from a given initial state.

12.2.2 Computation

One strategy for computing a Markov perfect equilibrium is iterating to convergence on pairs of Bellman equations and
decision rules.
In particular, let 𝑣𝑗

𝑖 , 𝑓𝑗
𝑖 be the value function and policy function for firm 𝑖 at the 𝑗-th iteration.

Imagine constructing the iterates

𝑣𝑗+1
𝑖 (𝑞𝑖, 𝑞−𝑖) = max

̂𝑞𝑖
{𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) + 𝛽𝑣𝑗

𝑖(̂𝑞𝑖, 𝑓−𝑖(𝑞−𝑖, 𝑞𝑖))} (12.5)

These iterations can be challenging to implement computationally.
However, they simplify for the case in which one-period payoff functions are quadratic and transition laws are linear —
which takes us to our next topic.

12.3 Linear Markov Perfect Equilibria

As we saw in the duopoly example, the study of Markov perfect equilibria in games with two players leads us to an
interrelated pair of Bellman equations.
In linear-quadratic dynamic games, these “stacked Bellman equations” become “stackedRiccati equations” with a tractable
mathematical structure.
We’ll lay out that structure in a general setup and then apply it to some simple problems.

12.3.1 Coupled Linear Regulator Problems

We consider a general linear-quadratic regulator game with two players.
For convenience, we’ll start with a finite horizon formulation, where 𝑡0 is the initial date and 𝑡1 is the common terminal
date.
Player 𝑖 takes {𝑢−𝑖𝑡} as given and minimizes

𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡 + 𝑢′
−𝑖𝑡𝑆𝑖𝑢−𝑖𝑡 + 2𝑥′

𝑡𝑊𝑖𝑢𝑖𝑡 + 2𝑢′
−𝑖𝑡𝑀𝑖𝑢𝑖𝑡} (12.6)

12.3. Linear Markov Perfect Equilibria 217

Equilibrium Models

while the state evolves according to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 (12.7)

Here
• 𝑥𝑡 is an 𝑛 × 1 state vector and 𝑢𝑖𝑡 is a 𝑘𝑖 × 1 vector of controls for player 𝑖
• 𝑅𝑖 is 𝑛 × 𝑛
• 𝑆𝑖 is 𝑘−𝑖 × 𝑘−𝑖

• 𝑄𝑖 is 𝑘𝑖 × 𝑘𝑖

• 𝑊𝑖 is 𝑛 × 𝑘𝑖

• 𝑀𝑖 is 𝑘−𝑖 × 𝑘𝑖

• 𝐴 is 𝑛 × 𝑛
• 𝐵𝑖 is 𝑛 × 𝑘𝑖

12.3.2 Computing Equilibrium

We formulate a linear Markov perfect equilibrium as follows.
Player 𝑖 employs linear decision rules 𝑢𝑖𝑡 = −𝐹𝑖𝑡𝑥𝑡, where 𝐹𝑖𝑡 is a 𝑘𝑖 × 𝑛 matrix.
A Markov perfect equilibrium is a pair of sequences {𝐹1𝑡, 𝐹2𝑡} over 𝑡 = 𝑡0, … , 𝑡1 − 1 such that

• {𝐹1𝑡} solves player 1’s problem, taking {𝐹2𝑡} as given, and
• {𝐹2𝑡} solves player 2’s problem, taking {𝐹1𝑡} as given

If we take 𝑢2𝑡 = −𝐹2𝑡𝑥𝑡 and substitute it into (12.6) and (12.7), then player 1’s problem becomes minimization of
𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡Π1𝑡𝑥𝑡 + 𝑢′

1𝑡𝑄1𝑢1𝑡 + 2𝑢′
1𝑡Γ1𝑡𝑥𝑡} (12.8)

subject to

𝑥𝑡+1 = Λ1𝑡𝑥𝑡 + 𝐵1𝑢1𝑡, (12.9)

where
• Λ𝑖𝑡 ∶= 𝐴 − 𝐵−𝑖𝐹−𝑖𝑡

• Π𝑖𝑡 ∶= 𝑅𝑖 + 𝐹 ′
−𝑖𝑡𝑆𝑖𝐹−𝑖𝑡

• Γ𝑖𝑡 ∶= 𝑊 ′
𝑖 − 𝑀 ′

𝑖 𝐹−𝑖𝑡

This is an LQ dynamic programming problem that can be solved by working backwards.
Decision rules that solve this problem are

𝐹1𝑡 = (𝑄1 + 𝛽𝐵′
1𝑃1𝑡+1𝐵1)−1(𝛽𝐵′

1𝑃1𝑡+1Λ1𝑡 + Γ1𝑡) (12.10)

where 𝑃1𝑡 solves the matrix Riccati difference equation

𝑃1𝑡 = Π1𝑡 − (𝛽𝐵′
1𝑃1𝑡+1Λ1𝑡 + Γ1𝑡)′(𝑄1 + 𝛽𝐵′

1𝑃1𝑡+1𝐵1)−1(𝛽𝐵′
1𝑃1𝑡+1Λ1𝑡 + Γ1𝑡) + 𝛽Λ′

1𝑡𝑃1𝑡+1Λ1𝑡 (12.11)

Similarly, decision rules that solve player 2’s problem are

𝐹2𝑡 = (𝑄2 + 𝛽𝐵′
2𝑃2𝑡+1𝐵2)−1(𝛽𝐵′

2𝑃2𝑡+1Λ2𝑡 + Γ2𝑡) (12.12)

218 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

where 𝑃2𝑡 solves

𝑃2𝑡 = Π2𝑡 − (𝛽𝐵′
2𝑃2𝑡+1Λ2𝑡 + Γ2𝑡)′(𝑄2 + 𝛽𝐵′

2𝑃2𝑡+1𝐵2)−1(𝛽𝐵′
2𝑃2𝑡+1Λ2𝑡 + Γ2𝑡) + 𝛽Λ′

2𝑡𝑃2𝑡+1Λ2𝑡 (12.13)

Here, in all cases 𝑡 = 𝑡0, … , 𝑡1 − 1 and the terminal conditions are 𝑃𝑖𝑡1
= 0.

The solution procedure is to use equations (12.10), (12.11), (12.12), and (12.13), and “work backwards” from time 𝑡1 −1.
Since we’re working backward, 𝑃1𝑡+1 and 𝑃2𝑡+1 are taken as given at each stage.
Moreover, since

• some terms on the right-hand side of (12.10) contain 𝐹2𝑡

• some terms on the right-hand side of (12.12) contain 𝐹1𝑡

we need to solve these 𝑘1 + 𝑘2 equations simultaneously.

Key Insight

A key insight is that equations (12.10) and (12.12) are linear in 𝐹1𝑡 and 𝐹2𝑡.
After these equations have been solved, we can take 𝐹𝑖𝑡 and solve for 𝑃𝑖𝑡 in (12.11) and (12.13).

Infinite Horizon

We often want to compute the solutions of such games for infinite horizons, in the hope that the decision rules 𝐹𝑖𝑡 settle
down to be time-invariant as 𝑡1 → +∞.
In practice, we usually fix 𝑡1 and compute the equilibrium of an infinite horizon game by driving 𝑡0 → −∞.
This is the approach we adopt in the next section.

12.3.3 Implementation

We use the function nnash from QuantEcon.py that computes a Markov perfect equilibrium of the infinite horizon linear-
quadratic dynamic game in the manner described above.

12.4 Application

Let’s use these procedures to treat some applications, starting with the duopoly model.

12.4.1 A Duopoly Model

To map the duopoly model into coupled linear-quadratic dynamic programming problems, define the state and controls
as

𝑥𝑡 ∶= ⎡⎢
⎣

1
𝑞1𝑡
𝑞2𝑡

⎤⎥
⎦

and 𝑢𝑖𝑡 ∶= 𝑞𝑖,𝑡+1 − 𝑞𝑖𝑡, 𝑖 = 1, 2

If we write

𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡

12.4. Application 219

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lqnash.py
http://quantecon.org/quantecon-py

Equilibrium Models

where 𝑄1 = 𝑄2 = 𝛾,

𝑅1 ∶= ⎡⎢
⎣

0 − 𝑎0
2 0

− 𝑎0
2 𝑎1

𝑎1
2

0 𝑎1
2 0

⎤⎥
⎦

and 𝑅2 ∶= ⎡⎢
⎣

0 0 − 𝑎0
2

0 0 𝑎1
2

− 𝑎0
2

𝑎1
2 𝑎1

⎤⎥
⎦

then we recover the one-period payoffs in expression (12.3).
The law of motion for the state 𝑥𝑡 is 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 where

𝐴 ∶= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, 𝐵1 ∶= ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝐵2 ∶= ⎡⎢
⎣

0
0
1
⎤⎥
⎦

The optimal decision rule of firm 𝑖 will take the form 𝑢𝑖𝑡 = −𝐹𝑖𝑥𝑡, inducing the following closed-loop system for the
evolution of 𝑥 in the Markov perfect equilibrium:

𝑥𝑡+1 = (𝐴 − 𝐵1𝐹1 − 𝐵1𝐹2)𝑥𝑡 (12.14)

12.4.2 Parameters and Solution

Consider the previously presented duopoly model with parameter values of:
• 𝑎0 = 10
• 𝑎1 = 2
• 𝛽 = 0.96
• 𝛾 = 12

From these, we compute the infinite horizon MPE using the preceding code

import numpy as np
import quantecon as qe

Parameters
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])

R1 = [[0., -a0 / 2, 0.],
[-a0 / 2., a1, a1 / 2.],
[0, a1 / 2., 0.]]

R2 = [[0., 0., -a0 / 2],
[0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

(continues on next page)

220 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

(continued from previous page)

Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

Display policies
print("Computed policies for firm 1 and firm 2:\n")
print(f"F1 = {F1}")
print(f"F2 = {F2}")
print("\n")

Computed policies for firm 1 and firm 2:

F1 = [[-0.66846615 0.29512482 0.07584666]]
F2 = [[-0.66846615 0.07584666 0.29512482]]

Running the code produces the following output.
One way to see that 𝐹𝑖 is indeed optimal for firm 𝑖 taking 𝐹2 as given is to use QuantEcon.py’s LQ class.
In particular, let’s take F2 as computed above, plug it into (12.8) and (12.9) to get firm 1’s problem and solve it using LQ.
We hope that the resulting policy will agree with F1 as computed above

Λ1 = A - B2 @ F2
lq1 = qe.LQ(Q1, R1, Λ1, B1, beta=β)
P1_ih, F1_ih, d = lq1.stationary_values()
F1_ih

array([[-0.66846613, 0.29512482, 0.07584666]])

This is close enough for rock and roll, as they say in the trade.
Indeed, np.allclose agrees with our assessment

np.allclose(F1, F1_ih)

True

12.4.3 Dynamics

Let’s now investigate the dynamics of price and output in this simple duopoly model under the MPE policies.
Given our optimal policies 𝐹1 and 𝐹2, the state evolves according to (12.14).
The following program

• imports 𝐹1 and 𝐹2 from the previous program along with all parameters.
• computes the evolution of 𝑥𝑡 using (12.14).
• extracts and plots industry output 𝑞𝑡 = 𝑞1𝑡 + 𝑞2𝑡 and price 𝑝𝑡 = 𝑎0 − 𝑎1𝑞𝑡.

12.4. Application 221

http://quantecon.org/quantecon-py

Equilibrium Models

AF = A - B1 @ F1 - B2 @ F2
n = 20
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n-1):

x[:, t+1] = AF @ x[:, t]
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(q, 'b-', lw=2, alpha=0.75, label='total output')
ax.plot(p, 'g-', lw=2, alpha=0.75, label='price')
ax.set_title('Output and prices, duopoly MPE')
ax.legend(frameon=False)
plt.show()

Note that the initial condition has been set to 𝑞10 = 𝑞20 = 1.0.
To gain some perspective we can compare this to what happens in the monopoly case.
The first panel in the next figure compares output of the monopolist and industry output under the MPE, as a function of
time.
The second panel shows analogous curves for price.
Here parameters are the same as above for both the MPE and monopoly solutions.
The monopolist initial condition is 𝑞0 = 2.0 to mimic the industry initial condition 𝑞10 = 𝑞20 = 1.0 in the MPE case.

222 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

12.4. Application 223

Equilibrium Models

As expected, output is higher and prices are lower under duopoly than monopoly.

12.5 Exercises

Exercise 12.5.1
Replicate the pair of figures showing the comparison of output and prices for the monopolist and duopoly under MPE.
Parameters are as in duopoly_mpe.py and you can use that code to compute MPE policies under duopoly.
The optimal policy in the monopolist case can be computed using QuantEcon.py’s LQ class.

Solution to Exercise 12.5.1
First, let’s compute the duopoly MPE under the stated parameters

== Parameters ==
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

== In LQ form ==
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])
R1 = [[0., -a0/2, 0.],

[-a0 / 2., a1, a1 / 2.],
[0, a1 / 2., 0.]]

R2 = [[0., 0., -a0 / 2],
[0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

== Solve using QE's nnash function ==
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

Now we evaluate the time path of industry output and prices given initial condition 𝑞10 = 𝑞20 = 1.

AF = A - B1 @ F1 - B2 @ F2
n = 20
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n-1):

x[:, t+1] = AF @ x[:, t]
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

224 Chapter 12. Markov Perfect Equilibrium

http://quantecon.org/quantecon-py

Equilibrium Models

Next, let’s have a look at the monopoly solution.
For the state and control, we take

𝑥𝑡 = 𝑞𝑡 − ̄𝑞 and 𝑢𝑡 = 𝑞𝑡+1 − 𝑞𝑡

To convert to an LQ problem we set

𝑅 = 𝑎1 and 𝑄 = 𝛾

in the payoff function 𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 and

𝐴 = 𝐵 = 1

in the law of motion 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡.
We solve for the optimal policy 𝑢𝑡 = −𝐹𝑥𝑡 and track the resulting dynamics of {𝑞𝑡}, starting at 𝑞0 = 2.0.

R = a1
Q = γ
A = B = 1
lq_alt = qe.LQ(Q, R, A, B, beta=β)
P, F, d = lq_alt.stationary_values()
q_bar = a0 / (2.0 * a1)
qm = np.empty(n)
qm[0] = 2
x0 = qm[0] - q_bar
x = x0
for i in range(1, n):

x = A * x - B * F * x
qm[i] = float(x) + q_bar

pm = a0 - a1 * qm

/tmp/ipykernel_6324/1048199155.py:13: DeprecationWarning: Conversion of an array␣
↪with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you␣
↪extract a single element from your array before performing this operation.␣
↪(Deprecated NumPy 1.25.)
qm[i] = float(x) + q_bar

Let’s have a look at the different time paths

fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(qm, 'b-', lw=2, alpha=0.75, label='monopolist output')
ax.plot(q, 'g-', lw=2, alpha=0.75, label='MPE total output')
ax.set(ylabel="output", xlabel="time", ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]
ax.plot(pm, 'b-', lw=2, alpha=0.75, label='monopolist price')
ax.plot(p, 'g-', lw=2, alpha=0.75, label='MPE price')
ax.set(ylabel="price", xlabel="time")
ax.legend(loc='upper right', frameon=0)
plt.show()

12.5. Exercises 225

Equilibrium Models

Exercise 12.5.2
In this exercise, we consider a slightly more sophisticated duopoly problem.
It takes the form of infinite horizon linear-quadratic game proposed by Judd [Judd, 1990].
Two firms set prices and quantities of two goods interrelated through their demand curves.
Relevant variables are defined as follows:

• 𝐼𝑖𝑡 = inventories of firm 𝑖 at beginning of 𝑡
• 𝑞𝑖𝑡 = production of firm 𝑖 during period 𝑡
• 𝑝𝑖𝑡 = price charged by firm 𝑖 during period 𝑡
• 𝑆𝑖𝑡 = sales made by firm 𝑖 during period 𝑡
• 𝐸𝑖𝑡 = costs of production of firm 𝑖 during period 𝑡

226 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

• 𝐶𝑖𝑡 = costs of carrying inventories for firm 𝑖 during 𝑡
The firms’ cost functions are

• 𝐶𝑖𝑡 = 𝑐𝑖1 + 𝑐𝑖2𝐼𝑖𝑡 + 0.5𝑐𝑖3𝐼2
𝑖𝑡

• 𝐸𝑖𝑡 = 𝑒𝑖1 + 𝑒𝑖2𝑞𝑖𝑡 + 0.5𝑒𝑖3𝑞2
𝑖𝑡 where 𝑒𝑖𝑗, 𝑐𝑖𝑗 are positive scalars

Inventories obey the laws of motion

𝐼𝑖,𝑡+1 = (1 − 𝛿)𝐼𝑖𝑡 + 𝑞𝑖𝑡 − 𝑆𝑖𝑡

Demand is governed by the linear schedule

𝑆𝑡 = 𝐷𝑝𝑖𝑡 + 𝑏

where
• 𝑆𝑡 = [𝑆1𝑡 𝑆2𝑡]

′

• 𝐷 is a 2 × 2 negative definite matrix and
• 𝑏 is a vector of constants

Firm 𝑖 maximizes the undiscounted sum

lim
𝑇 →∞

1
𝑇

𝑇
∑
𝑡=0

(𝑝𝑖𝑡𝑆𝑖𝑡 − 𝐸𝑖𝑡 − 𝐶𝑖𝑡)

We can convert this to a linear-quadratic problem by taking

𝑢𝑖𝑡 = [𝑝𝑖𝑡
𝑞𝑖𝑡

] and 𝑥𝑡 = ⎡⎢
⎣

𝐼1𝑡
𝐼2𝑡
1

⎤⎥
⎦

Decision rules for price and quantity take the form 𝑢𝑖𝑡 = −𝐹𝑖𝑥𝑡.
The Markov perfect equilibrium of Judd’s model can be computed by filling in the matrices appropriately.
The exercise is to calculate these matrices and compute the following figures.
The first figure shows the dynamics of inventories for each firm when the parameters are

δ = 0.02
D = np.array([[-1, 0.5], [0.5, -1]])
b = np.array([25, 25])
c1 = c2 = np.array([1, -2, 1])
e1 = e2 = np.array([10, 10, 3])

Inventories trend to a common steady state.
If we increase the depreciation rate to 𝛿 = 0.05, then we expect steady state inventories to fall.
This is indeed the case, as the next figure shows
In this exercise, reproduce the figure when 𝛿 = 0.02.

Solution to Exercise 12.5.2
We treat the case 𝛿 = 0.02

12.5. Exercises 227

Equilibrium Models

228 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

δ = 0.02
D = np.array([[-1, 0.5], [0.5, -1]])
b = np.array([25, 25])
c1 = c2 = np.array([1, -2, 1])
e1 = e2 = np.array([10, 10, 3])

δ_1 = 1 - δ

Recalling that the control and state are

𝑢𝑖𝑡 = [𝑝𝑖𝑡
𝑞𝑖𝑡

] and 𝑥𝑡 = ⎡⎢
⎣

𝐼1𝑡
𝐼2𝑡
1

⎤⎥
⎦

we set up the matrices as follows:

== Create matrices needed to compute the Nash feedback equilibrium ==

A = np.array([[δ_1, 0, -δ_1 * b[0]],
[0, δ_1, -δ_1 * b[1]],
[0, 0, 1]])

B1 = δ_1 * np.array([[1, -D[0, 0]],
[0, -D[1, 0]],
[0, 0]])

B2 = δ_1 * np.array([[0, -D[0, 1]],
[1, -D[1, 1]],
[0, 0]])

R1 = -np.array([[0.5 * c1[2], 0, 0.5 * c1[1]],
[0, 0, 0],
[0.5 * c1[1], 0, c1[0]]])

R2 = -np.array([[0, 0, 0],
[0, 0.5 * c2[2], 0.5 * c2[1]],
[0, 0.5 * c2[1], c2[0]]])

Q1 = np.array([[-0.5 * e1[2], 0], [0, D[0, 0]]])
Q2 = np.array([[-0.5 * e2[2], 0], [0, D[1, 1]]])

S1 = np.zeros((2, 2))
S2 = np.copy(S1)

W1 = np.array([[0, 0],
[0, 0],
[-0.5 * e1[1], b[0] / 2.]])

W2 = np.array([[0, 0],
[0, 0],
[-0.5 * e2[1], b[1] / 2.]])

M1 = np.array([[0, 0], [0, D[0, 1] / 2.]])
M2 = np.copy(M1)

We can now compute the equilibrium using qe.nnash

F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1,
R2, Q1, Q2, S1,

(continues on next page)

12.5. Exercises 229

Equilibrium Models

(continued from previous page)

S2, W1, W2, M1, M2)

print("\nFirm 1's feedback rule:\n")
print(F1)

print("\nFirm 2's feedback rule:\n")
print(F2)

Firm 1's feedback rule:

[[2.43666582e-01 2.72360627e-02 -6.82788293e+00]
[3.92370734e-01 1.39696451e-01 -3.77341073e+01]]

Firm 2's feedback rule:

[[2.72360627e-02 2.43666582e-01 -6.82788293e+00]
[1.39696451e-01 3.92370734e-01 -3.77341073e+01]]

Now let’s look at the dynamics of inventories, and reproduce the graph corresponding to 𝛿 = 0.02

AF = A - B1 @ F1 - B2 @ F2
n = 25
x = np.empty((3, n))
x[:, 0] = 2, 0, 1
for t in range(n-1):

x[:, t+1] = AF @ x[:, t]
I1 = x[0, :]
I2 = x[1, :]
fig, ax = plt.subplots(figsize=(9, 5))
ax.plot(I1, 'b-', lw=2, alpha=0.75, label='inventories, firm 1')
ax.plot(I2, 'g-', lw=2, alpha=0.75, label='inventories, firm 2')
ax.set_title(rf'$\delta = {δ}$')
ax.legend()
plt.show()

230 Chapter 12. Markov Perfect Equilibrium

Equilibrium Models

12.5. Exercises 231

Equilibrium Models

232 Chapter 12. Markov Perfect Equilibrium

CHAPTER

THIRTEEN

KNOWING THE FORECASTS OF OTHERS

Contents

• Knowing the Forecasts of Others

– Introduction

– The Setting

– Tactics

– Equilibrium Conditions

– Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡
– Guess-and-Verify Tactic

– Equilibrium with One Noisy Signal on 𝜃𝑡

– Equilibrium with Two Noisy Signals on 𝜃𝑡

– Key Step

– An observed common shock benchmark

– Comparison of All Signal Structures

– Notes on History of the Problem

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon
!conda install -y -c plotly plotly plotly-orca

13.1 Introduction

Robert E. Lucas, Jr. [Robert E. Lucas, 1975], Kenneth Kasa [Kasa, 2000], and Robert Townsend [Townsend, 1983]
showed that putting decision makers into environments in which they want to infer persistent hidden state variables from
equilibrium prices and quantities can elongate and amplify impulse responses to aggregate shocks.
This provides a promising way to think about amplification mechanisms in business cycle models.
Townsend [Townsend, 1983] noted that living in such environments makes decision makers want to forecast forecasts of
others.

233

Equilibrium Models

This theme has been pursued for situations in which decision makers’ imperfect information forces them to pursue an
infinite recursion that involves forming beliefs about the beliefs of others (e.g., [Allen et al., 2002]).
Lucas [Robert E. Lucas, 1975] side stepped having decision makers forecast the forecasts of other decision makers by
assuming that they simply pool their information before forecasting.
A pooling equilibrium like Lucas’s plays a prominent role in this lecture.
Because he didn’t assume such pooling, [Townsend, 1983] confronted the forecasting the forecasts of others problem.
To formulate the problem recursively required that Townsend define a decision maker’s state vector.
Townsend concluded that his original model required an intractable infinite dimensional state space.
Therefore, he constructed a more manageable approximating model in which a hidden Markov component of a demand
shock is revealed to all firms after a fixed, finite number of periods.
In this lecture, we illustrate again the theme that finding the state is an art by showing how to formulate Townsend’s
original model in terms of a low-dimensional state space.
We show that Townsend’s model shares equilibrium prices and quantities with those that prevail in a pooling equilibrium.
That finding emerged from a line of research about Townsend’s model that built on [Pearlman et al., 1986] and that
culminated in [Pearlman and Sargent, 2005] .
Rather than directly deploying the [Pearlman et al., 1986] machinery here, we shall instead implement a sneaky guess-
and-verify tactic.

• We first compute a pooling equilibrium and represent it as an instance of a linear state-space system provided by
the Python class quantecon.LinearStateSpace.

• Leaving the state-transition equation for the pooling equilibrium unaltered, we alter the observation vector for a
firm to match what it is in Townsend’s original model. So rather than directly observing the signal received by firms
in the other industry, a firm sees the equilibrium price of the good produced by the other industry.

• We compute a population linear least squares regression of the noisy signal at time 𝑡 that firms in the other industry
would receive in a pooling equilibrium on time 𝑡 information that a firm receives in Townsend’s original model.

• The 𝑅2 in this regression equals 1.
• That verifies that a firm’s information set in Townsend’s original model equals its information set in a pooling
equilibrium.

• Therefore, equilibrium prices and quantities in Townsend’s original model equal those in a pooling equilibrium.

13.1.1 A Sequence of Models

We proceed by describing a sequence of models of two industries that are linked in a single way:
• shocks to the demand curves for their products have a common component.

The models are simplified versions of Townsend’s [Townsend, 1983].
Townsend’s is a model of a rational expectations equilibrium in which firms want to forecast forecasts of others.
In Townsend’s model, firms condition their forecasts on observed endogenous variables whose equilibrium laws of motion
are determined by their own forecasting functions.
We shall assemble model components progressively in ways that can help us to appreciate the structure of the pooling
equilibrium that ultimately interests us.
While keeping all other aspects of the model the same, we shall study consequences of alternative assumptions about what
decision makers observe.

234 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

Technically, this lecture deploys concepts and tools that appear in First Look at Kalman Filter and Rational Expectations
Equilibrium.

13.2 The Setting

We cast all variables in terms of deviations from means.
Therefore, we omit constants from inverse demand curves and other functions.
Firms in industry 𝑖 = 1, 2 use a single factor of production, capital 𝑘𝑖

𝑡, to produce output of a single good, 𝑦𝑖
𝑡.

Firms bear quadratic costs of adjusting their capital stocks.
A representative firm in industry 𝑖 has production function 𝑦𝑖

𝑡 = 𝑓𝑘𝑖
𝑡, 𝑓 > 0.

The firm acts as a price taker with respect to output price 𝑃 𝑖
𝑡 , and maximizes

𝐸𝑖
0

∞
∑
𝑡=0

𝛽𝑡 {𝑃 𝑖
𝑡 𝑓𝑘𝑖

𝑡 − .5ℎ(𝑘𝑖
𝑡+1 − 𝑘𝑖

𝑡)2} , ℎ > 0. (13.1)

Demand in industry 𝑖 is described by the inverse demand curve

𝑃 𝑖
𝑡 = −𝑏𝑌 𝑖

𝑡 + 𝜃𝑡 + 𝜖𝑖
𝑡, 𝑏 > 0, (13.2)

where 𝑃 𝑖
𝑡 is the price of good 𝑖 at 𝑡, 𝑌 𝑖

𝑡 = 𝑓𝐾𝑖
𝑡 is output in market 𝑖, 𝜃𝑡 is a persistent component of a demand shock

that is common across the two industries, and 𝜖𝑖
𝑡 is an industry specific component of the demand shock that is i.i.d. and

whose time 𝑡 marginal distribution is 𝒩(0, 𝜎2
𝜖).

We assume that 𝜃𝑡 is governed by

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡 (13.3)

where {𝑣𝑡} is an i.i.d. sequence of Gaussian shocks, each with mean zero and variance 𝜎2
𝑣.

To simplify notation, we’ll study a special case by setting ℎ = 𝑓 = 1.
Costs of adjusting their capital stocks impart to firms an incentive to forecast the price of the good that they sell.
Throughout, we use the rational expectations equilibrium concept presented in this lecture Rational Expectations Equi-
librium.
We let capital letters denote market wide objects and lower case letters denote objects chosen by a representative firm.
In each industry, a competitive equilibrium prevails.
To rationalize the big 𝐾, little 𝑘 connection, we can think of there being a continuum of firms in industry 𝑖, with each
firm being indexed by 𝜔 ∈ [0, 1] and 𝐾𝑖 = ∫1

0 𝑘𝑖(𝜔)𝑑𝜔.
In equilibrium, 𝑘𝑖

𝑡 = 𝐾𝑖
𝑡 , but we must distinguish between 𝑘𝑖

𝑡 and 𝐾𝑖
𝑡 when we pose the firm’s optimization problem.

13.3 Tactics

We shall compute equilibrium laws of motion for capital in industry 𝑖 under a sequence of assumptions about what a
representative firm observes.
Successive members of this sequence make a representative firm’s information more and more obscure.
We begin with the most information, then gradually withdraw information in a way that approaches and eventually reaches
the Townsend-like information structure that we are ultimately interested in.

13.2. The Setting 235

https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/rational_expectations.html
https://python-intro.quantecon.org/rational_expectations.html
https://python-intro.quantecon.org/rational_expectations.html
https://python-intro.quantecon.org/rational_expectations.html

Equilibrium Models

Thus, we shall compute equilibria under the following alternative information structures:
• Perfect foresight: future values of 𝜃𝑡, 𝜖𝑖

𝑡 are observed in industry 𝑖.
• Observed history of stochastic 𝜃𝑡: {𝜃𝑡, 𝜖𝑖

𝑡} are realizations from a stochastic process; current and past values of
each are observed at time 𝑡 but future values are not.

• One noise-ridden observation on 𝜃𝑡: values of {𝜃𝑡, 𝜖𝑖
𝑡} separately are never observed. However, at time 𝑡, a

history 𝑤𝑡 of scalar noise-ridden observations on 𝜃𝑡 is observed at time 𝑡.
• Two noise-ridden observations on 𝜃𝑡: values of {𝜃𝑡, 𝜖𝑖

𝑡} separately are never observed. However, at time 𝑡, a
history 𝑤𝑡 of two noise-ridden observations on 𝜃𝑡 is observed at time 𝑡.

Successive computations build one on previous ones.
We proceed by first finding an equilibrium under perfect foresight.
To compute an equilibrium with current and past but not future values of 𝜃𝑡 observed, we use a certainty equivalence prin-
ciple to justify modifying the perfect foresight equilibrium by replacing future values of 𝜃𝑠, 𝜖𝑖

𝑠, 𝑠 ≥ 𝑡 with mathematical
expectations conditioned on 𝜃𝑡.
This provides the equilibrium when 𝜃𝑡 is observed at 𝑡 but future 𝜃𝑡+𝑗 and 𝜖𝑖

𝑡+𝑗 are not observed.

To find an equilibrium when a history 𝑤𝑡 observations of a single noise-ridden 𝜃𝑡 is observed, we again apply a certainty
equivalence principle and replace future values of the random variables 𝜃𝑠, 𝜖𝑖

𝑠, 𝑠 ≥ 𝑡 with their mathematical expectations
conditioned on 𝑤𝑡.
To find an equilibrium when a history 𝑤𝑡 of two noisy signals on 𝜃𝑡 is observed, we replace future values of the random
variables 𝜃𝑠, 𝜖𝑖

𝑠, 𝑠 ≥ 𝑡 with their mathematical expectations conditioned on history 𝑤𝑡.
We call the equilibrium with two noise-ridden observations on 𝜃𝑡 a pooling equilibrium.

• It corresponds to an arrangement in which at the beginning of each period firms in industries 1 and 2 somehow get
together and share information about current values of their noisy signals on 𝜃.

We want ultimately to compare outcomes in a pooling equilibrium with an equilibrium under the following alternative
information structure for a firm in industry 𝑖 that originally interested Townsend [Townsend, 1983]:

• Firm 𝑖’s noise-ridden signal on 𝜃𝑡 and the price in industry −𝑖, a firm in industry 𝑖 observes a history 𝑤𝑡 of
one noise-ridden signal on 𝜃𝑡 and a history of industry −𝑖’s price is observed. (Here −𝑖 means ``not 𝑖’’.)

With this information structure, a representative firm 𝑖 sees the price as well as the aggregate endogenous state variable
𝑌 𝑖

𝑡 in its own industry.
That allows it to infer the total demand shock 𝜃𝑡 + 𝜖𝑖

𝑡.
However, at time 𝑡, the firm sees only 𝑃 −𝑖

𝑡 and does not see 𝑌 −𝑖
𝑡 , so that a firm in industry 𝑖 does not directly observe

𝜃𝑡 + 𝜖−𝑖
𝑡 .

Nevertheless, it will turn out that equilibrium prices and quantities in this equilibrium equal their counterparts in a pooling
equilibrium because firms in industry 𝑖 are able to infer the noisy signal about the demand shock received by firms in
industry −𝑖.
We shall verify this assertion by using a guess and verify tactic that involves running a least squares regression and in-
specting its 𝑅2.1

1 [Pearlman and Sargent, 2005] verified this assertion using a different tactic, namely, by constructing analytic formulas for an equilibrium under
the incomplete information structure and confirming that they match the pooling equilibrium formulas derived here.

236 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

13.4 Equilibrium Conditions

It is convenient to solve a firm’s problem without uncertainty by forming the Lagrangian:

𝐽 =
∞

∑
𝑡=0

𝛽𝑡 {𝑃 𝑖
𝑡 𝑘𝑖

𝑡 − .5(𝜇𝑖
𝑡)2 + 𝜙𝑖

𝑡 [𝑘𝑖
𝑡 + 𝜇𝑖

𝑡 − 𝑘𝑖
𝑡+1]}

where {𝜙𝑖
𝑡} is a sequence of Lagrange multipliers on the transition law 𝑘𝑖

𝑡+1 = 𝑘𝑖
𝑡 + 𝜇𝑖

𝑡.
First order conditions for the nonstochastic problem are

𝜙𝑖
𝑡 = 𝛽𝜙𝑖

𝑡+1 + 𝛽𝑃 𝑖
𝑡+1

𝜇𝑖
𝑡 = 𝜙𝑖

𝑡.
(13.4)

Substituting the demand function (13.2) for 𝑃 𝑖
𝑡 , imposing the condition 𝑘𝑖

𝑡 = 𝐾𝑖
𝑡 that makes representative firm be

representative, and using definition (13.6) of 𝑔𝑖
𝑡, the Euler equation (13.4) lagged by one period can be expressed as

−𝑏𝑘𝑖
𝑡 + 𝜃𝑡 + 𝜖𝑖

𝑡 + (𝑘𝑖
𝑡+1 − 𝑘𝑖

𝑡) − 𝑔𝑖
𝑡 = 0 or

𝑘𝑖
𝑡+1 = (𝑏 + 1)𝑘𝑖

𝑡 − 𝜃𝑡 − 𝜖𝑖
𝑡 + 𝑔𝑖

𝑡 (13.5)

where we define 𝑔𝑖
𝑡 by

𝑔𝑖
𝑡 = 𝛽−1(𝑘𝑖

𝑡 − 𝑘𝑖
𝑡−1) (13.6)

We can write Euler equation (13.4) as:

𝑔𝑖
𝑡 = 𝑃 𝑖

𝑡 + 𝛽𝑔𝑖
𝑡+1 (13.7)

In addition, we have the law of motion for 𝜃𝑡, (13.3), and the demand equation (13.2).
In summary, with perfect foresight, equilibrium conditions for industry 𝑖 comprise the following system of difference
equations:

𝑘𝑖
𝑡+1 = (1 + 𝑏)𝑘𝑖

𝑡 − 𝜖𝑖
𝑡 − 𝜃𝑡 + 𝑔𝑖

𝑡
𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡
𝑔𝑖

𝑡+1 = 𝛽−1(𝑔𝑖
𝑡 − 𝑃 𝑖

𝑡)
𝑃 𝑖

𝑡 = −𝑏𝑘𝑖
𝑡 + 𝜖𝑖

𝑡 + 𝜃𝑡

(13.8)

Without perfect foresight, the same system prevails except that the following equation replaces the third equation of (13.8):

𝑔𝑖
𝑡+1,𝑡 = 𝛽−1(𝑔𝑖

𝑡 − 𝑃 𝑖
𝑡)

where 𝑥𝑡+1,𝑡 denotes the mathematical expectation of 𝑥𝑡+1 conditional on information at time 𝑡.

13.4.1 Equilibrium under perfect foresight

Our first step is to compute the equilibrium law of motion for 𝑘𝑖
𝑡 under perfect foresight.

Let 𝐿 be the lag operator.2

Equations (13.7) and (13.5) imply the second order difference equation in 𝑘𝑖
𝑡:3

[(𝐿−1 − (1 + 𝑏))(1 − 𝛽𝐿−1) + 𝑏] 𝑘𝑖
𝑡 = 𝛽𝐿−1𝜖𝑖

𝑡 + 𝛽𝐿−1𝜃𝑡. (13.9)
2 See [Sargent, 1987], especially chapters IX and XIV, for principles that guide solving some roots backwards and others forwards.
3 As noted by [Sargent, 1987], this difference equation is the Euler equation for a planning problem that maximizes the discounted sum of consumer

plus producer surplus.

13.4. Equilibrium Conditions 237

Equilibrium Models

Factor the polynomial in 𝐿 on the left side as:

−𝛽[𝐿−2 − (𝛽−1 + (1 + 𝑏))𝐿−1 + 𝛽−1] = �̃�−1(𝐿−1 − �̃�)(1 − �̃�𝛽𝐿−1)

where |�̃�| < 1 is the smaller root and 𝜆 is the larger root of (𝜆 − 1)(𝜆 − 1/𝛽) = 𝑏𝜆.
Therefore, (13.9) can be expressed as

�̃�−1(𝐿−1 − �̃�)(1 − �̃�𝛽𝐿−1)𝑘𝑖
𝑡 = 𝛽𝐿−1𝜖𝑖

𝑡 + 𝛽𝐿−1𝜃𝑡.
Solving the stable root backwards and the unstable root forwards gives

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + �̃�𝛽
1 − �̃�𝛽𝐿−1

(𝜖𝑖
𝑡+1 + 𝜃𝑡+1).

Recall that we have already set 𝑘𝑖 = 𝐾𝑖 at the appropriate point in the argument, namely, after having derived the
first-order necessary conditions for a representative firm in industry 𝑖.
Thus, under perfect foresight the equilibrium capital stock in industry 𝑖 satisfies

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 +
∞

∑
𝑗=1

(�̃�𝛽)𝑗(𝜖𝑖
𝑡+𝑗 + 𝜃𝑡+𝑗). (13.10)

Next, we shall investigate consequences of replacing future values of (𝜖𝑖
𝑡+𝑗 + 𝜃𝑡+𝑗) in equation (13.10) with alternative

forecasting schemes.
In particular, we shall compute equilibrium laws of motion for capital under alternative assumptions about information
available to firms in market 𝑖.

13.5 Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡

If future 𝜃’s are unknown at 𝑡, it is appropriate to replace all random variables on the right side of (13.10) with their
conditional expectations based on the information available to decision makers in market 𝑖.
For now, we assume that this information set is 𝐼𝑝

𝑡 = [𝜃𝑡 𝜖𝑖𝑡], where 𝑧𝑡 represents the semi-infinite history of variable
𝑧𝑠 up to time 𝑡.
Later we shall give firms less information.
To obtain an appropriate counterpart to (13.10) under our current assumption about information, we apply a certainty
equivalence principle.
In particular, it is appropriate to take (13.10) and replace each term (𝜖𝑖

𝑡+𝑗+𝜃𝑡+𝑗) on the right side with𝐸[(𝜖𝑖
𝑡+𝑗+𝜃𝑡+𝑗)|𝜃𝑡].

After using (13.3) and the i.i.d. assumption about {𝜖𝑖
𝑡}, this gives

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + �̃�𝛽𝜌
1 − �̃�𝛽𝜌

𝜃𝑡

or
𝑘𝑖

𝑡+1 = �̃�𝑘𝑖
𝑡 + 𝜌

𝜆 − 𝜌𝜃𝑡 (13.11)

where 𝜆 ≡ (𝛽�̃�)−1.
For our purposes, it is convenient to represent the equilibrium {𝑘𝑖

𝑡}𝑡 process recursively as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

̂𝜃𝑡+1 = 𝜌𝜃𝑡
𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡.

(13.12)

238 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

13.5.1 Filtering

One noisy signal

We get closer to the original Townsend model that interests us by now assuming that firms in market 𝑖 do not observe 𝜃𝑡.
Instead they observe a history 𝑤𝑡 of noisy signals at time 𝑡.
In particular, assume that

𝑤𝑡 = 𝜃𝑡 + 𝑒𝑡
𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡

(13.13)

where 𝑒𝑡 and 𝑣𝑡 are mutually independent i.i.d. Gaussian shock processes with means of zero and variances 𝜎2
𝑒 and 𝜎2

𝑣,
respectively.
Define

̂𝜃𝑡+1 = 𝐸(𝜃𝑡+1|𝑤𝑡)

where 𝑤𝑡 = [𝑤𝑡, 𝑤𝑡−1, … , 𝑤0] denotes the history of the 𝑤𝑠 process up to and including 𝑡.
Associated with the state-space representation (13.13) is the time-invariant innovations representation

̂𝜃𝑡+1 = 𝜌 ̂𝜃𝑡 + 𝜅𝑎𝑡

𝑤𝑡 = ̂𝜃𝑡 + 𝑎𝑡
(13.14)

where 𝑎𝑡 ≡ 𝑤𝑡 − 𝐸(𝑤𝑡|𝑤𝑡−1) is the innovations process in 𝑤𝑡 and the Kalman gain 𝜅 is

𝜅 = 𝜌𝑝
𝑝 + 𝜎2𝑒

(13.15)

and where 𝑝 satisfies the Riccati equation

𝑝 = 𝜎2
𝑣 + 𝑝𝜌2𝜎2

𝑒
𝜎2𝑒 + 𝑝. (13.16)

State-reconstruction error

Define the state reconstruction error ̃𝜃𝑡 by

̃𝜃𝑡 = 𝜃𝑡 − ̂𝜃𝑡.

Then 𝑝 = 𝐸 ̃𝜃2
𝑡 .

Equations (13.13) and (13.14) imply

̃𝜃𝑡+1 = (𝜌 − 𝜅) ̃𝜃𝑡 + 𝑣𝑡 − 𝑘𝑒𝑡. (13.17)

Notice that we can express ̂𝜃𝑡+1 as

̂𝜃𝑡+1 = [𝜌𝜃𝑡 + 𝑣𝑡] + [𝜅𝑒𝑡 − (𝜌 − 𝜅) ̃𝜃𝑡 − 𝑣𝑡], (13.18)

where the first term in braces equals 𝜃𝑡+1 and the second term in braces equals − ̃𝜃𝑡+1.
We can express (13.11) as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌𝐸𝜃𝑡+1|𝜃𝑡. (13.19)

13.5. Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡 239

Equilibrium Models

An application of a certainty equivalence principle asserts that when only 𝑤𝑡 is observed, a corresponding equilibrium
{𝑘𝑖

𝑡} process can be found by replacing the information set 𝜃𝑡 with 𝑤𝑡 in (13.19).
Making this substitution and using (13.18) leads to

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 𝜌
𝜆 − 𝜌𝜃𝑡 + 𝜅

𝜆 − 𝜌𝑒𝑡 − 𝜌 − 𝜅
𝜆 − 𝜌

̃𝜃𝑡. (13.20)

Simplifying equation (13.18), we also have

̂𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜅𝑒𝑡 − (𝜌 − 𝜅) ̃𝜃𝑡. (13.21)

Equations (13.20), (13.21) describe an equilibrium when 𝑤𝑡 is observed.

13.5.2 A new state variable

Relative to (13.11), the equilibrium acquires a new state variable, namely, the 𝜃–reconstruction error, ̃𝜃𝑡.
For a subsequent argument, by using (13.15), it is convenient to write (13.20) as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 𝜌
𝜆 − 𝜌𝜃𝑡 + 1

𝜆 − 𝜌
𝑝𝜌

𝑝 + 𝜎2𝑒
𝑒𝑡 − 1

𝜆 − 𝜌
𝜌𝜎2

𝑒
𝑝 + 𝜎2𝑒

̃𝜃𝑡 (13.22)

In summary, when decision makers in market 𝑖 observe a semi-infinite history 𝑤𝑡 of noisy signals 𝑤𝑡 on 𝜃𝑡 at 𝑡, we an
equilibrium law of motion for 𝑘𝑖

𝑡 can be represented as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

̂𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜌𝑝
𝑝 + 𝜎2𝑒

𝑒𝑡 − 𝜌𝜎2
𝑒

𝑝 + 𝜎2𝑒
̃𝜃𝑡

̃𝜃𝑡+1 = 𝜌𝜎2
𝑒

𝑝 + 𝜎2𝑒
̃𝜃𝑡 − 𝑝𝜌

𝑝 + 𝜎2𝑒
𝑒𝑡 + 𝑣𝑡

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡.

(13.23)

13.5.3 Two Noisy Signals

We now construct a pooling equilibrium by assuming that at time 𝑡 a firm in industry 𝑖 receives a vector 𝑤𝑡 of two noisy
signals on 𝜃𝑡:

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡

𝑤𝑡 = [1
1] 𝜃𝑡 + [𝑒1𝑡

𝑒2𝑡
]

To justify that we are constructing is a pooling equilibrium we can assume that

[𝑒1𝑡
𝑒2𝑡

] = [𝜖1
𝑡

𝜖2
𝑡
]

so that a firm in industry 𝑖 observes the noisy signals on that 𝜃𝑡 presented to firms in both industries 𝑖 and −𝑖.
The pertinent innovations representation now becomes

̂𝜃𝑡+1 = 𝜌 ̂𝜃𝑡 + 𝜅𝑎𝑡

𝑤𝑡 = [1
1] ̂𝜃𝑡 + 𝑎𝑡

(13.24)

240 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

where 𝑎𝑡 ≡ 𝑤𝑡 − 𝐸[𝑤𝑡|𝑤𝑡−1] is a (2 × 1) vector of innovations in 𝑤𝑡 and 𝜅 is now a (1 × 2) vector of Kalman gains.
Formulas for the Kalman filter imply that

𝜅 = 𝜌𝑝
2𝑝 + 𝜎2𝑒

[1 1] (13.25)

where 𝑝 = 𝐸 ̃𝜃𝑡 ̃𝜃𝑇
𝑡 now satisfies the Riccati equation

𝑝 = 𝜎2
𝑣 + 𝑝𝜌2𝜎2

𝑒
2𝑝 + 𝜎2𝑒

. (13.26)

Thus, when a representative firm in industry 𝑖 observes two noisy signals on 𝜃𝑡, we can express the equilibrium law of
motion for capital recursively as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

̂𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜌𝑝
2𝑝 + 𝜎2𝑒

(𝑒1𝑡 + 𝑒2𝑡) − 𝜌𝜎2
𝑒

2𝑝 + 𝜎2𝑒
̃𝜃𝑡

̃𝜃𝑡+1 = 𝜌𝜎2
𝑒

2𝑝 + 𝜎2𝑒
̃𝜃𝑡 − 𝑝𝜌

2𝑝 + 𝜎2𝑒
(𝑒1𝑡 + 𝑒2𝑡) + 𝑣𝑡

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡.

(13.27)

Below, by using a guess-and-verify tactic, we shall show that outcomes in this pooling equilibrium equal those in an
equilibrium under the alternative information structure that interested Townsend [Townsend, 1983] but that originally
seemed too challenging to compute.4

13.6 Guess-and-Verify Tactic

As a preliminary step we shall take our recursive representation (13.23) of an equilibrium in industry 𝑖 with one noisy
signal on 𝜃𝑡 and perform the following steps:

• Compute 𝜆 and �̃� by posing a root-finding problem and solving it with numpy.roots
• Compute 𝑝 by forming the appropriate discrete Riccati equation and then solving it using quantecon.
solve_discrete_riccati

• Add a measurement equation for 𝑃 𝑖
𝑡 = 𝑏𝑘𝑖

𝑡 + 𝜃𝑡 + 𝑒𝑡, 𝜃𝑡 + 𝑒𝑡, and 𝑒𝑡 to system (13.23).
• Write the resulting system in state-space form and encode it using quantecon.LinearStateSpace
• Use methods of the quantecon.LinearStateSpace to compute impulse response functions of 𝑘𝑖

𝑡 with
respect to shocks 𝑣𝑡, 𝑒𝑡.

After analyzing the one-noisy-signal structure in this way, by making appropriate modifications we shall analyze the two-
noisy-signal structure.
We proceed to analyze first the one-noisy-signal structure and then the two-noisy-signal structure.

4 [Pearlman and Sargent, 2005] verify the same claim by applying machinery of [Pearlman et al., 1986].

13.6. Guess-and-Verify Tactic 241

Equilibrium Models

13.7 Equilibrium with One Noisy Signal on 𝜃𝑡

13.7.1 Step 1: Solve for �̃� and 𝜆

1. Cast (𝜆 − 1) (𝜆 − 1
𝛽) = 𝑏𝜆 as 𝑝 (𝜆) = 0 where 𝑝 is a polynomial function of 𝜆.

2. Use numpy.roots to solve for the roots of 𝑝
3. Verify 𝜆 ≈ 1

𝛽�̃�

Note that 𝑝 (𝜆) = 𝜆2 − (1 + 𝑏 + 1
𝛽) 𝜆 + 1

𝛽 .

13.7.2 Step 2: Solve for 𝑝

1. Cast 𝑝 = 𝜎2
𝑣 + 𝑝𝜌2𝜎2

𝑒
2𝑝+𝜎2𝑒

as a discrete matrix Riccati equation.

2. Use quantecon.solve_discrete_riccati to solve for 𝑝
3. Verify 𝑝 ≈ 𝜎2

𝑣 + 𝑝𝜌2𝜎2
𝑒

2𝑝+𝜎2𝑒

Note that:
𝐴 = [𝜌]
𝐵 = [

√
2]

𝑅 = [𝜎2
𝑒]

𝑄 = [𝜎2
𝑣]

𝑁 = [0]

13.7.3 Step 3: Represent the system using quantecon.LinearStateSpace

We use the following representation for constructing the quantecon.LinearStateSpace instance.

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑡+1
𝑘𝑖

𝑡+1
̃𝜃𝑡+1

𝑃𝑡+1
𝜃𝑡+1
𝑣𝑡+1

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝑥𝑡+1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
𝜅

𝜆−𝜌 �̃� −1
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 𝜌
𝜆−𝜌 0

−𝜅 0 𝜅𝜎2
𝑒

𝑝 0 0 1
𝑏𝜅

𝜆−𝜌 𝑏�̃� −𝑏
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 𝑏𝜌
𝜆−𝜌 + 𝜌 1

0 0 0 0 𝜌 1
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃𝑡
𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+

⎡
⎢
⎢
⎢
⎢
⎣

𝜎𝑒 0
0 0
0 0
𝜎𝑒 0
0 0
0 𝜎𝑣

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝐶

[𝑧1,𝑡+1
𝑧2,𝑡+1

]

⎡⎢
⎣

𝑃𝑡
𝑒𝑡 + 𝜃𝑡

𝑒𝑡

⎤⎥
⎦⏟⏟⏟⏟⏟

𝑦𝑡

= ⎡⎢
⎣

0 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 0

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃𝑡
𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+ ⎡⎢
⎣

0
0
0

⎤⎥
⎦⏟

𝐻

𝑤𝑡+1

⎡⎢
⎣

𝑧1,𝑡+1
𝑧2,𝑡+1
𝑤𝑡+1

⎤⎥
⎦

∼ 𝒩 (0, 𝐼)

𝜅 = 𝜌𝑝
𝑝 + 𝜎2𝑒

242 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

This representation includes extraneous variables such as 𝑃𝑡 in the state vector.
We formulate things in this way because it allows us easily to compute covariances of these variables with other
components of the state vector (step 5 above) by using the stationary_distributions method of the Lin-
earStateSpace class.

import numpy as np
import quantecon as qe
import plotly.graph_objects as go
import plotly.offline as pyo
from statsmodels.regression.linear_model import OLS
from IPython.display import display, Latex, Image

pyo.init_notebook_mode(connected=True)

β = 0.9 # Discount factor
ρ = 0.8 # Persistence parameter for the hidden state
b = 1.5 # Demand curve parameter
σ_v = 0.5 # Standard deviation of shock to θ_t
σ_e = 0.6 # Standard deviation of shocks to w_t

Compute λ
poly = np.array([1, -(1 + β + b) / β, 1 / β])
roots_poly = np.roots(poly)
λ_tilde = roots_poly.min()
λ = roots_poly.max()

Verify that λ = (βλ_tilde) ^ (-1)
tol = 1e-12
np.max(np.abs(λ - 1 / (β * λ_tilde))) < tol

True

A_ricc = np.array([[ρ]])
B_ricc = np.array([[1.]])
R_ricc = np.array([[σ_e ** 2]])
Q_ricc = np.array([[σ_v ** 2]])
N_ricc = np.zeros((1, 1))
p = qe.solve_discrete_riccati(A_ricc, B_ricc, Q_ricc, R_ricc, N_ricc).item()

p_one = p # Save for comparison later

Verify that p = σ_v ^ 2 + p * ρ ^ 2 - (ρ * p) ^ 2 / (p + σ_e ** 2)
tol = 1e-12
np.abs(p - (σ_v ** 2 + p * ρ ** 2 - (ρ * p) ** 2 / (p + σ_e ** 2))) < tol

True

κ = ρ * p / (p + σ_e ** 2)
κ_prod = κ * σ_e ** 2 / p

(continues on next page)

13.7. Equilibrium with One Noisy Signal on 𝜃𝑡 243

Equilibrium Models

(continued from previous page)

κ_one = κ # Save for comparison later

A_lss = np.array([[0., 0., 0., 0., 0., 0.],
[κ / (λ - ρ), λ_tilde, -κ_prod / (λ - ρ), 0., ρ / (λ - ρ), 0.],
[-κ, 0., κ_prod, 0., 0., 1.],
[b * κ / (λ - ρ) , b * λ_tilde, -b * κ_prod / (λ - ρ), 0., b * ρ /␣

↪(λ - ρ) + ρ, 1.],
[0., 0., 0., 0., ρ, 1.],
[0., 0., 0., 0., 0., 0.]])

C_lss = np.array([[σ_e, 0.],
[0., 0.],
[0., 0.],
[σ_e, 0.],
[0., 0.],
[0., σ_v]])

G_lss = np.array([[0., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0.]])

mu_0 = np.array([0., 0., 0., 0., 0., 0.])

lss = qe.LinearStateSpace(A_lss, C_lss, G_lss, mu_0=mu_0)

ts_length = 100_000
x, y = lss.simulate(ts_length, random_state=1)

Verify that two ways of computing P_t match
np.max(np.abs(np.array([[1., b, 0., 0., 1., 0.]]) @ x - x[3])) < 1e-12

True

13.7.4 Step 4: Compute impulse response functions

To compute impulse response functions of 𝑘𝑖
𝑡, we use the impulse_response method of the quantecon.

LinearStateSpace class and plot outcomes.

xcoef, ycoef = lss.impulse_response(j=21)
data = np.array([xcoef])[0, :, 1, :]

fig = go.Figure(data=go.Scatter(y=data[:-1, 0], name=r'e_{t+1}'))
fig.add_trace(go.Scatter(y=data[1:, 1], name=r'v_{t+1}'))
fig.update_layout(title=r'Impulse Response Function',

xaxis_title='Time',
yaxis_title=r'k^{i}_{t}')

fig1 = fig
Export to PNG file
Image(fig1.to_image(format="png"))

(continues on next page)

244 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

(continued from previous page)

fig1.show() will provide interactive plot when running
notebook locally

13.7.5 Step 5: Compute stationary covariance matrices and population regres-
sions

We compute stationary covariance matrices by calling the stationary_distributions method of the
quantecon.LinearStateSpace class.
By appropriately decomposing the covariance matrix of the state vector, we obtain ingredients of pertinent population
regression coefficients.
Define

Σ𝑥 = [Σ11 Σ12
Σ21 Σ22

]

where Σ11 is the covariance matrix of dependent variables and Σ22 is the covariance matrix of independent variables.
Regression coefficients are 𝛽 = Σ21Σ−1

22 .
To verify an instance of a law of large numbers computation, we construct a long simulation of the state vector and for the
resulting sample compute the ordinary least-squares estimator of 𝛽 that we shall compare with corresponding population
regression coefficients.

13.7. Equilibrium with One Noisy Signal on 𝜃𝑡 245

Equilibrium Models

_, _, Σ_x, Σ_y, Σ_yx = lss.stationary_distributions()

Σ_11 = Σ_x[0, 0]
Σ_12 = Σ_x[0, 1:4]
Σ_21 = Σ_x[1:4, 0]
Σ_22 = Σ_x[1:4, 1:4]

reg_coeffs = Σ_12 @ np.linalg.inv(Σ_22)

print('Regression coefficients (e_t on k_t, P_t, \\tilde{\\theta_t})')
print('------------------------------')
print(r'k_t:', reg_coeffs[0])
print(r'\tilde{\theta_t}:', reg_coeffs[1])
print(r'P_t:', reg_coeffs[2])

Regression coefficients (e_t on k_t, P_t, \tilde{\theta_t})

k_t: -3.275556845219769
\tilde{\theta_t}: -0.9649461170475457
P_t: 0.9649461170475457

Compute R squared
R_squared = reg_coeffs @ Σ_x[1:4, 1:4] @ reg_coeffs / Σ_x[0, 0]
R_squared

0.9649461170475461

Verify that the computed coefficients are close to least squares estimates
model = OLS(x[0], x[1:4].T)
reg_res = model.fit()
np.max(np.abs(reg_coeffs - reg_res.params)) < 1e-2

True

Verify that R_squared matches least squares estimate
np.abs(reg_res.rsquared - R_squared) < 1e-2

True

Verify that θ_t + e_t can be recovered
model = OLS(y[1], x[1:4].T)
reg_res = model.fit()
np.abs(reg_res.rsquared - 1.) < 1e-6

True

246 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

13.8 Equilibrium with Two Noisy Signals on 𝜃𝑡

Steps 1, 4, and 5 are identical to those for the one-noisy-signal structure.
Step 2 requires a straightforward modification.
For step 3, we construct the following state-space representation so that we can get our hands on all of the random
processes that we require in order to compute a regression of the noisy signal about 𝜃 from the other industry that a firm
receives directly in a pooling equilibrium against information that a firm would receive in Townsend’s original model.
For this purpose, we include equilibrium goods prices from both industries in the state vector:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1,𝑡+1
𝑒2,𝑡+1
𝑘𝑖

𝑡+1
̃𝜃𝑡+1

𝑃 1
𝑡+1

𝑃 2
𝑡+1

𝜃𝑡+1
𝑣𝑡+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝑥𝑡+1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
𝜅

𝜆−𝜌
𝜅

𝜆−𝜌 �̃� −1
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 0 𝜌
𝜆−𝜌 0

−𝜅 −𝜅 0 𝜅𝜎2
𝑒

𝑝 0 0 0 1
𝑏𝜅

𝜆−𝜌
𝑏𝜅

𝜆−𝜌 𝑏�̃� −𝑏
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 0 𝑏𝜌
𝜆−𝜌 + 𝜌 1

𝑏𝜅
𝜆−𝜌

𝑏𝜅
𝜆−𝜌 𝑏�̃� −𝑏

𝜆−𝜌
𝜅𝜎2

𝑒
𝑝 0 0 𝑏𝜌

𝜆−𝜌 + 𝜌 1
0 0 0 0 0 0 𝜌 1
0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1,𝑡
𝑒2,𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃 1
𝑡

𝑃 2
𝑡

𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎𝑒 0 0
0 𝜎𝑒 0
0 0 0
0 0 0
𝜎𝑒 0 0
0 𝜎𝑒 0
0 0 0
0 0 𝜎𝑣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐶

⎡⎢
⎣

𝑧1,𝑡+1
𝑧2,𝑡+1
𝑧3,𝑡+1

⎤⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑃 1
𝑡

𝑃 2
𝑡

𝑒1,𝑡 + 𝜃𝑡
𝑒2,𝑡 + 𝜃𝑡

𝑒1,𝑡
𝑒2,𝑡

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝑦𝑡

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1,𝑡
𝑒2,𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃 1
𝑡

𝑃 2
𝑡

𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+

⎡
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝐻

𝑤𝑡+1

⎡
⎢⎢
⎣

𝑧1,𝑡+1
𝑧2,𝑡+1
𝑧3,𝑡+1
𝑤𝑡+1

⎤
⎥⎥
⎦

∼ 𝒩 (0, 𝐼)

𝜅 = 𝜌𝑝
2𝑝 + 𝜎2𝑒

A_ricc = np.array([[ρ]])
B_ricc = np.array([[np.sqrt(2)]])
R_ricc = np.array([[σ_e ** 2]])
Q_ricc = np.array([[σ_v ** 2]])
N_ricc = np.zeros((1, 1))
p = qe.solve_discrete_riccati(A_ricc, B_ricc, Q_ricc, R_ricc, N_ricc).item()

p_two = p # Save for comparison later

Verify that p = σ_v^2 + (pρ^2σ_e^2) / (2p + σ_e^2)
tol = 1e-12
np.abs(p - (σ_v ** 2 + p * ρ ** 2 * σ_e ** 2 / (2 * p + σ_e ** 2))) < tol

True

13.8. Equilibrium with Two Noisy Signals on 𝜃𝑡 247

Equilibrium Models

κ = ρ * p / (2 * p + σ_e ** 2)
κ_prod = κ * σ_e ** 2 / p

κ_two = κ # Save for comparison later

A_lss = np.array([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[κ / (λ - ρ), κ / (λ - ρ), λ_tilde, -κ_prod / (λ - ρ), 0., 0., ρ /␣

↪(λ - ρ), 0.],
[-κ, -κ, 0., κ_prod, 0., 0., 0., 1.],
[b * κ / (λ - ρ), b * κ / (λ - ρ), b * λ_tilde, -b * κ_prod / (λ -␣

↪ρ), 0., 0., b * ρ / (λ - ρ) + ρ, 1.],
[b * κ / (λ - ρ), b * κ / (λ - ρ), b * λ_tilde, -b * κ_prod / (λ -␣

↪ρ), 0., 0., b * ρ / (λ - ρ) + ρ, 1.],
[0., 0., 0., 0., 0., 0., ρ, 1.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

C_lss = np.array([[σ_e, 0., 0.],
[0., σ_e, 0.],
[0., 0., 0.],
[0., 0., 0.],
[σ_e, 0., 0.],
[0., σ_e, 0.],
[0., 0., 0.],
[0., 0., σ_v]])

G_lss = np.array([[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0, 0, 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.]])

mu_0 = np.array([0., 0., 0., 0., 0., 0., 0., 0.])

lss = qe.LinearStateSpace(A_lss, C_lss, G_lss, mu_0=mu_0)

ts_length = 100_000
x, y = lss.simulate(ts_length, random_state=1)

xcoef, ycoef = lss.impulse_response(j=20)

data = np.array([xcoef])[0, :, 2, :]

fig = go.Figure(data=go.Scatter(y=data[:-1, 0], name=r'$e_{1,t+1}$'))
fig.add_trace(go.Scatter(y=data[:-1, 1], name=r'$e_{2,t+1}$'))
fig.add_trace(go.Scatter(y=data[1:, 2], name=r'v_{t+1}'))
fig.update_layout(title=r'Impulse Response Function',

xaxis_title='Time',
yaxis_title=r'k^{i}_{t}')

fig2=fig
Export to PNG file
Image(fig2.to_image(format="png"))
fig2.show() will provide interactive plot when running

(continues on next page)

248 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

(continued from previous page)

notebook locally

_, _, Σ_x, Σ_y, Σ_yx = lss.stationary_distributions()

Σ_11 = Σ_x[1, 1]
Σ_12 = Σ_x[1, 2:5]
Σ_21 = Σ_x[2:5, 1]
Σ_22 = Σ_x[2:5, 2:5]

reg_coeffs = Σ_12 @ np.linalg.inv(Σ_22)

print('Regression coefficients (e_{2,t} on k_t, P^{1}_t, \\tilde{\\theta_t})')
print('------------------------------')
print(r'k_t:', reg_coeffs[0])
print(r'\tilde{\theta_t}:', reg_coeffs[1])
print(r'P_t:', reg_coeffs[2])

Regression coefficients (e_{2,t} on k_t, P^{1}_t, \tilde{\theta_t})

k_t: 0.0
\tilde{\theta_t}: 0.0
P_t: 0.0

Compute R squared

(continues on next page)

13.8. Equilibrium with Two Noisy Signals on 𝜃𝑡 249

Equilibrium Models

(continued from previous page)

R_squared = reg_coeffs @ Σ_x[2:5, 2:5] @ reg_coeffs / Σ_x[1, 1]
R_squared

0.0

Verify that the computed coefficients are close to least squares estimates
model = OLS(x[1], x[2:5].T)
reg_res = model.fit()
np.max(np.abs(reg_coeffs - reg_res.params)) < 1e-2

True

Verify that R_squared matches least squares estimate
np.abs(reg_res.rsquared - R_squared) < 1e-2

True

_, _, Σ_x, Σ_y, Σ_yx = lss.stationary_distributions()

Σ_11 = Σ_x[1, 1]
Σ_12 = Σ_x[1, 2:6]
Σ_21 = Σ_x[2:6, 1]
Σ_22 = Σ_x[2:6, 2:6]

reg_coeffs = Σ_12 @ np.linalg.inv(Σ_22)

print('Regression coefficients (e_{2,t} on k_t, P^{1}_t, P^{2}_t, \\tilde{\\theta_t})
↪')

print('------------------------------')
print(r'k_t:', reg_coeffs[0])
print(r'\tilde{\theta_t}:', reg_coeffs[1])
print(r'P^{1}_t:', reg_coeffs[2])
print(r'P^{2}_t:', reg_coeffs[3])

Regression coefficients (e_{2,t} on k_t, P^{1}_t, P^{2}_t, \tilde{\theta_t})

k_t: -3.1373589171035627
\tilde{\theta_t}: -0.9242343967443672
P^{1}_t: -0.037882801627816154
P^{2}_t: 0.9621171983721835

Compute R squared
R_squared = reg_coeffs @ Σ_x[2:6, 2:6] @ reg_coeffs / Σ_x[1, 1]
R_squared

250 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

0.9621171983721837

13.9 Key Step

Now we come to the key step for verifying that equilibrium outcomes for prices and quantities are identical in the pooling
equilibrium original model that led Townsend to deduce an infinite-dimensional state space.
We accomplish this by computing a population linear least squares regression of the noisy signal that firms in the other
industry receive in a pooling equilibrium on time 𝑡 information that a firm would receive in Townsend’s original model.
Let’s compute the regression and stare at the 𝑅2:

Verify that θ_t + e^{2}_t can be recovered

θ_t + e^{2}_t on k^{i}_t, P^{1}_t, P^{2}_t, \\tilde{\\theta_t}

model = OLS(y[1], x[2:6].T)
reg_res = model.fit()
np.abs(reg_res.rsquared - 1.) < 1e-6

True

reg_res.rsquared

1.0

The 𝑅2 in this regression equals 1.
That verifies that a firm’s information set in Townsend’s original model equals its information set in a pooling equilibrium.
Therefore, equilibrium prices and quantities in Townsend’s original model equal those in a pooling equilibrium.

13.10 An observed common shock benchmark

For purposes of comparison, it is useful to construct a model in which demand disturbance in both industries still both
share have a common persistent component 𝜃𝑡, but in which the persistent component 𝜃 is observed each period.
In this case, firms share the same information immediately and have no need to deploy signal-extraction techniques.
Thus, consider a version of our model in which histories of both 𝜖𝑖

𝑡 and 𝜃𝑡 are observed by a representative firm.
In this case, the firm’s optimal decision rule is described by

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

where ̂𝜃𝑡+1 = 𝐸𝑡𝜃𝑡+1 is given by

̂𝜃𝑡+1 = 𝜌𝜃𝑡

13.9. Key Step 251

Equilibrium Models

Thus, the firm’s decision rule can be expressed

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 𝜌
𝜆 − 𝜌𝜃𝑡

Consequently, when a history 𝜃𝑠, 𝑠 ≤ 𝑡 is observed without noise, the following state space system prevails:

[𝜃𝑡+1
𝑘𝑖

𝑡+1
] = [𝜌 0

𝜌
𝜆−𝜌 �̃�] [𝜃𝑡

𝑘𝑖
𝑡
] + [𝜎𝑣

0] 𝑧1,𝑡+1

[𝜃𝑡
𝑘𝑖

𝑡
] = [1 0

0 1] [𝜃𝑡
𝑘𝑖

𝑡
] + [0

0] 𝑧1,𝑡+1

where 𝑧𝑡,𝑡+1 is a scalar iid standardized Gaussian process.
As usual, the system can be written as

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑧𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝐻𝑤𝑡+1

In order once again to use the quantecon class quantecon.LinearStateSpace, let’s form pertinent state-space
matrices

Ao_lss = np.array([[ρ, 0.],
[ρ / (λ - ρ), λ_tilde]])

Co_lss = np.array([[σ_v], [0.]])

Go_lss = np.identity(2)

muo_0 = np.array([0., 0.])

lsso = qe.LinearStateSpace(Ao_lss, Co_lss, Go_lss, mu_0=muo_0)

Now let’s form and plot an impulse response function of 𝑘𝑖
𝑡 to shocks 𝑣𝑡 to 𝜃𝑡+1

xcoef, ycoef = lsso.impulse_response(j=21)
data = np.array([ycoef])[0, :, 1, :]

fig = go.Figure(data=go.Scatter(y=data[:-1, 0], name=r'z_{t+1}'))
fig.update_layout(title=r'Impulse Response Function',

xaxis_title= r'lag j',
yaxis_title=r'k^{i}_{t}')

fig3 = fig
Export to PNG file
Image(fig3.to_image(format="png"))
fig1.show() will provide interactive plot when running
notebook locally

252 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

13.11 Comparison of All Signal Structures

It is enlightening side by side to plot impulse response functions for capital for the two noisy-signal information structures
and the noiseless signal on 𝜃 that we have just presented.
Please remember that the two-signal structure corresponds to the pooling equilibrium and also Townsend’s original
model.

fig_comb = go.Figure(data=[
*fig1.data,
*fig2.update_traces(xaxis='x2', yaxis='y2').data,
*fig3.update_traces(xaxis='x3', yaxis='y3').data

]).set_subplots(1, 3,
subplot_titles=("One noisy-signal",

"Two noisy-signal",
"No Noise"),

horizontal_spacing=0.02,
shared_yaxes=True)

Export to PNG file
Image(fig_comb.to_image(format="png"))
fig_comb.show() # will provide interactive plot when running
notebook locally

13.11. Comparison of All Signal Structures 253

Equilibrium Models

The three panels in the graph above show that
• responses of 𝑘𝑖

𝑡 to shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process are largest in the no-noisy-signal
structure in which the firm observes 𝜃𝑡 at time 𝑡

• responses of 𝑘𝑖
𝑡 to shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process are smaller in the two-noisy-signal

structure
• responses of 𝑘𝑖

𝑡 to shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process are smallest in the one-noisy-signal
structure

With respect to the iid demand shocks 𝑒𝑡 the graphs show that
• responses of 𝑘𝑖

𝑡 to shocks 𝑒𝑡 to the hidden Markov demand state 𝜃𝑡 process are smallest (i.e., nonexistent) in the
no-noisy-signal structure in which the firm observes 𝜃𝑡 at time 𝑡

• responses of 𝑘𝑖
𝑡 to shocks 𝑒𝑡 to the hidden Markov demand state 𝜃𝑡 process are larger in the two-noisy-signal

structure
• responses of 𝑘𝑖

𝑡 to idiosyncratic own-market noise-shocks 𝑒𝑡 are largest in the one-noisy-signal structure
Among other things, these findings indicate that time series correlations and coherences between outputs in the two
industries are higher in the two-noisy-signals or pooling model than they are in the one-noisy signal model.
The enhanced influence of the shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process that emerges from the two-noisy-
signal model relative to the one-noisy-signal model is a symptom of a lower equilibrium hidden-state reconstruction error
variance in the two-signal model:

display(Latex('$\\textbf{Reconstruction error variances}$'))
display(Latex(f'One-noise structure: {round(p_one, 6)}'))
display(Latex(f'Two-noise structure: {round(p_two, 6)}'))

254 Chapter 13. Knowing the Forecasts of Others

Equilibrium Models

Reconstruction error variances

𝑂𝑛𝑒 − 𝑛𝑜𝑖𝑠𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.36618

𝑇 𝑤𝑜 − 𝑛𝑜𝑖𝑠𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.324062

Kalman gains for the two structures are

display(Latex('$\\textbf{Kalman Gains}$'))
display(Latex(f'One noisy-signal structure: {round(κ_one, 6)}'))
display(Latex(f'Two noisy-signals structure: {round(κ_two, 6)}'))

Kalman Gains

𝑂𝑛𝑒𝑛𝑜𝑖𝑠𝑦 − 𝑠𝑖𝑔𝑛𝑎𝑙𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.403404

𝑇 𝑤𝑜𝑛𝑜𝑖𝑠𝑦 − 𝑠𝑖𝑔𝑛𝑎𝑙𝑠𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.25716

Another lesson that comes from the preceding three-panel graph is that the presence of iid noise 𝜖𝑖
𝑡 in industry 𝑖 generates

a response in 𝑘−𝑖
𝑡 in the two-noisy-signal structure, but not in the one-noisy-signal structure.

13.12 Notes on History of the Problem

To truncate what he saw as an intractable, infinite dimensional state space, Townsend constructed an approximating model
in which the common hidden Markov demand shock is revealed to all firms after a fixed number of periods.
Thus,

• Townsend wanted to assume that at time 𝑡 firms in industry 𝑖 observe 𝑘𝑖
𝑡, 𝑌 𝑖

𝑡 , 𝑃 𝑖
𝑡 , (𝑃 −𝑖)𝑡, where (𝑃 −𝑖)𝑡 is the

history of prices in the other market up to time 𝑡.
• Because that turned out to be too challenging, Townsend made a sensible alternative assumption that eased his
calculations: that after a large number 𝑆 of periods, firms in industry 𝑖 observe the hidden Markov component of
the demand shock 𝜃𝑡−𝑆 .

Townsend argued that the more manageable model could do a good job of approximating the intractable model in which
the Markov component of the demand shock remains unobserved for ever.
By applying technical machinery of [Pearlman et al., 1986], [Pearlman and Sargent, 2005] showed that there is a recursive
representation of the equilibrium of the perpetually and symmetrically uninformed model that Townsend wanted to solve
[Townsend, 1983].
A reader of [Pearlman and Sargent, 2005] will notice that their representation of the equilibrium of Townsend’s model
exactly matches that of the pooling equilibrium presented here.
We have structured our notation in this lecture to faciliate comparison of the pooling equilibrium constructed here with
the equilibrium of Townsend’s model reported in [Pearlman and Sargent, 2005].
The computational method of [Pearlman and Sargent, 2005] is recursive: it enlists the Kalman filter and invariant subspace
methods for solving systems of Euler equations5 .

5 See [Anderson et al., 1996] for an account of invariant subspace methods.

13.12. Notes on History of the Problem 255

Equilibrium Models

As [Singleton, 1987], [Kasa, 2000], and [Sargent, 1991] also found, the equilibrium is fully revealing: observed prices
tell participants in industry 𝑖 all of the information held by participants in market −𝑖 (−𝑖 means not 𝑖).
This means that higher-order beliefs play no role: observing equilibrium prices in effect lets decision makers pool their
information sets6 .
The disappearance of higher order beliefs means that decision makers in this model do not really face a problem of
forecasting the forecasts of others.
Because those forecasts are the same as their own, they know them.

13.12.1 Further historical remarks

Sargent [Sargent, 1991] proposed a way to compute an equilibrium without making Townsend’s approximation.
Extending the reasoning of [Muth, 1960], Sargent noticed that it is possible to summarize the relevant history with a low
dimensional object, namely, a small number of current and lagged forecasting errors.
Positing an equilibrium in a space of perceived laws of motion for endogenous variables that takes the form of a vector
autoregressive, moving average, Sargent described an equilibrium as a fixed point of a mapping from the perceived law
of motion to the actual law of motion of that form.
Sargent worked in the time domain and proceeded to guess and verify the appropriate orders of the autoregressive and
moving average pieces of the equilibrium representation.
By working in the frequency domain [Kasa, 2000] showed how to discover the appropriate orders of the autoregressive
and moving average parts, and also how to compute an equilibrium.
The [Pearlman and Sargent, 2005] recursive computational method, which stays in the time domain, also discovered
appropriate orders of the autoregressive and moving average pieces.
In addition, by displaying equilibrium representations in the form of [Pearlman et al., 1986], [Pearlman and Sargent,
2005] showed how the moving average piece is linked to the innovation process of the hidden persistent component of
the demand shock.
That scalar innovation process is the additional state variable contributed by the problem of extracting a signal from
equilibrium prices that decision makers face in Townsend’s model.

6 See [Allen et al., 2002] for a discussion of information assumptions needed to create a situation in which higher order beliefs appear in equilibrium
decision rules. A way to read our findings in light of [Allen et al., 2002] is that, relative to the number of signals agents observe, Townsend’s section 8
model has too few random shocks to get higher order beliefs to play a role.

256 Chapter 13. Knowing the Forecasts of Others

Part IV

Other

257

CHAPTER

FOURTEEN

TROUBLESHOOTING

Contents

• Troubleshooting

– Fixing Your Local Environment

– Reporting an Issue

This page is for readers experiencing errors when running the code from the lectures.

14.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever
1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?
Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not
up to date.
Here’s a useful article on how to update Anaconda.
Another option is to simply remove Anaconda and reinstall.
You also need to keep the external code libraries, such as QuantEcon.py up to date.
For this task you can either

• use conda install -y quantecon on the command line, or
• execute !conda install -y quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.
First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture

259

https://python-programming.quantecon.org/getting_started.html
https://www.anaconda.com/blog/keeping-anaconda-date
https://quantecon.org/quantecon-py

Equilibrium Models

Second, you can report an issue, so we can try to fix your local set up.
We like getting feedback on the lectures so please don’t hesitate to get in touch.

14.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker.
Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can
provide.
Another feedback option is to use our discourse forum.
Finally, you can provide direct feedback to contact@quantecon.org

260 Chapter 14. Troubleshooting

https://github.com/QuantEcon/lecture-python/issues
https://discourse.quantecon.org/
mailto:contact@quantecon.org

CHAPTER

FIFTEEN

REFERENCES

261

Equilibrium Models

262 Chapter 15. References

CHAPTER

SIXTEEN

EXECUTION STATISTICS

This table contains the latest execution statistics.

Document Modified Method Run Time (s) Status
aiyagari 2024-05-01 00:15 cache 15.62 ✅
arellano 2024-05-01 00:17 cache 82.62 ✅
cass_koopmans_1 2024-05-01 00:17 cache 6.83 ✅
cass_koopmans_2 2024-05-01 00:17 cache 6.03 ✅
coase 2024-05-01 00:17 cache 9.82 ✅
house_auction 2024-05-01 00:17 cache 4.25 ✅
intro 2024-05-01 00:17 cache 0.97 ✅
knowing_forecasts_of_others 2024-05-01 00:19 cache 91.69 ✅
markov_perf 2024-05-01 00:19 cache 5.57 ✅
matsuyama 2024-05-01 00:59 cache 2406.79 ✅
rational_expectations 2024-05-01 00:59 cache 4.9 ✅
re_with_feedback 2024-05-01 00:59 cache 8.36 ✅
status 2024-05-01 00:17 cache 0.97 ✅
troubleshooting 2024-05-01 00:17 cache 0.97 ✅
two_auctions 2024-05-01 00:59 cache 14.49 ✅
uncertainty_traps 2024-05-01 01:00 cache 2.51 ✅
zreferences 2024-05-01 00:17 cache 0.97 ✅

These lectures are built on linux instances through github actions so are executed using the following hardware
specifications

263

https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners#supported-runners-and-hardware-resources

Equilibrium Models

264 Chapter 16. Execution Statistics

BIBLIOGRAPHY

[Aiy94] S Rao Aiyagari. Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics,
109(3):659–684, 1994.

[AMS02] Franklin Allen, Stephen Morris, and Hyun Song Shin. Beauty contests, bubbles, and iterated expectations in
asset markets. mimeo, 2002.

[AHMS96] Evan Anderson, Lars Peter Hansen, Ellen R. McGrattan, and Thomas J. Sargent. Mechanics of forming
and estimating dynamic linear economies. In Hans M. Amman, David A. Kendrick, and John Rust, editors,
Handbook of computational economics, 171–252. Elsevier Science, North-Holland, 1996.

[Are08] Cristina Arellano. Default risk and income fluctuations in emerging economies. The American Economic
Review, pages 690–712, 2008.

[BBZ15] Jess Benhabib, Alberto Bisin, and Shenghao Zhu. The wealth distribution in bewley economies with capital
income risk. Journal of Economic Theory, 159:489–515, 2015.

[BS79] L M Benveniste and J A Scheinkman. On the Differentiability of the Value Function in Dynamic Models of
Economics. Econometrica, 47(3):727–732, 1979.

[Bew77] Truman Bewley. The permanent income hypothesis: a theoretical formulation. Journal of Economic Theory,
16(2):252–292, 1977.

[BK80] Olivier Jean Blanchard and Charles M Kahn. The Solution of Linear Difference Models under Rational
Expectations. Econometrica, 48(5):1305–1311, July 1980.

[Cag56] Philip Cagan. The monetary dynamics of hyperinflation. In Milton Friedman, editor, Studies in the Quantity
Theory of Money, pages 25–117. University of Chicago Press, Chicago, 1956.

[Cas65] David Cass. Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies,
32(3):233–240, 1965.

[Cla71] E. Clarke. Multipart pricing of public goods. Public Choice, 8:19–33, 1971.
[Coa37] Ronald Harry Coase. The nature of the firm. economica, 4(16):386–405, 1937.
[DJ92] Raymond J Deneckere and Kenneth L Judd. Cyclical and chaotic behavior in a dynamic equilibrium model,

with implications for fiscal policy. Cycles and chaos in economic equilibrium, pages 308–329, 1992.
[DS10] Ulrich Doraszelski and Mark Satterthwaite. Computable markov-perfect industry dynamics. The RAND

Journal of Economics, 41(2):215–243, 2010.
[EP95] Richard Ericson and Ariel Pakes. Markov-perfect industry dynamics: a framework for empirical work. The

Review of Economic Studies, 62(1):53–82, 1995.
[EH01] G W Evans and S Honkapohja. Learning and Expectations in Macroeconomics. Frontiers of Economic Re-

search. Princeton University Press, 2001.

265

Equilibrium Models

[FSTD15] Pablo Fajgelbaum, Edouard Schaal, and Mathieu Taschereau-Dumouchel. Uncertainty traps. Technical Re-
port, National Bureau of Economic Research, 2015.

[Gro73] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
[HL96] John Heaton and Deborah J Lucas. Evaluating the effects of incomplete markets on risk sharing and asset

pricing. Journal of Political Economy, pages 443–487, 1996.
[HK85] Elhanan Helpman and Paul Krugman.Market structure and international trade. MIT Press Cambridge, 1985.
[Jud90] K L Judd. Cournot versus bertrand: a dynamic resolution. Technical Report, Hoover Institution, Stanford

University, 1990.
[Jud85] Kenneth L Judd. On the performance of patents. Econometrica, pages 567–585, 1985.
[Kas00] Kenneth Kasa. Forecasting the forecasts of others in the frequency domain. Review of Economic Dynamics,

3:726–756, 2000.
[KNS18] Tomoo Kikuchi, Kazuo Nishimura, and John Stachurski. Span of control, transaction costs, and the structure

of production chains. Theoretical Economics, 13(2):729–760, 2018.
[Koo65] Tjalling C. Koopmans. On the concept of optimal economic growth. In Tjalling C. Koopmans, editor, The

Economic Approach to Development Planning, pages 225–287. Chicago, 1965.
[LM80] David Levhari and Leonard JMirman. The great fish war: an example using a dynamic cournot-nash solution.

The Bell Journal of Economics, pages 322–334, 1980.
[LS18] L Ljungqvist and T J Sargent. Recursive Macroeconomic Theory. MIT Press, 4 edition, 2018.
[LP71] Robert E Lucas, Jr. and Edward C Prescott. Investment under uncertainty. Econometrica: Journal of the

Econometric Society, pages 659–681, 1971.
[MS89] Albert Marcet and Thomas J Sargent. Convergence of Least-Squares Learning in Environments with Hidden

State Variables and Private Information. Journal of Political Economy, 97(6):1306–1322, 1989.
[MCWG95] A Mas-Colell, M DWhinston, and J R Green.Microeconomic Theory. Volume 1. Oxford University Press,

1995.
[Mut60] John F Muth. Optimal properties of exponentially weighted forecasts. Journal of the american statistical

association, 55(290):299–306, 1960.
[PCL86] Joseph Pearlman, David Currie, and Paul Levine. Rational Expectations Models with Private Information.

Economic Modelling, 3(2):90–105, 1986.
[PS05] Joseph G. Pearlman and Thomas J. Sargent. Knowing the Forecasts of Others. Review of Economic Dy-

namics, 8(2):480–497, April 2005. URL: https://ideas.repec.org/a/red/issued/v8y2005i2p480-497.html,
doi:10.1016/j.red.2004.10.011.

[REL75] Jr. Robert E. Lucas. An equilibrium model of the business cycle. Journal of Political Economy, 83:1113–
1144, 1975.

[Rya12] Stephen P Ryan. The costs of environmental regulation in a concentrated industry. Econometrica,
80(3):1019–1061, 2012.

[Sar77] Thomas J Sargent. The Demand for Money During Hyperinflations under Rational Expectations: I. Interna-
tional Economic Review, 18(1):59–82, February 1977.

[Sar87] Thomas J Sargent. Macroeconomic Theory. Academic Press, New York, 2nd edition, 1987.
[Sar91] Thomas J. Sargent. Equilibrium with signal extraction from endogenous variables. Journal of Economic Dy-

namics and Control, 15:245–273, 1991.
[Sin87] Kenneth J. Singleton. Asset prices in a time-series model with disparately informed competitive traders. In

William A. Barnett and Kenneth J. Singleton, editors, New Apprroaches to Monetary Economics. Cambridge
University Press, 1987.

266 Bibliography

https://ideas.repec.org/a/red/issued/v8y2005i2p480-497.html
https://doi.org/10.1016/j.red.2004.10.011

Equilibrium Models

[Tow83] Robert M. Townsend. Forecasting the forecasts of others. Journal of Political Economy, 91:546–588, 1983.
[VL11] Ngo Van Long. Dynamic games in the economics of natural resources: a survey. Dynamic Games and Ap-

plications, 1(1):115–148, 2011.
[Vic61] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16:8–37,

1961.
[Whi83] Charles Whiteman. Linear Rational Expectations Models: A User's Guide. University of Minnesota Press,

Minneapolis, Minnesota, 1983.
[YS05] G Alastair Young and Richard L Smith. Essentials of statistical inference. Cambridge University Press, 2005.

Bibliography 267

Equilibrium Models

268 Bibliography

INDEX

C
Coase's Theory of the Firm, 67

L
Linear Markov Perfect Equilibria, 217

M
Markov Perfect Equilibrium, 215

Applications, 219
Background, 216
Overview, 215

R
Rational Expectations Equilibrium, 181

Competitive Equilbrium (w. Adjustment
Costs), 184

Computation, 187
Definition, 184
Planning Problem Approach, 187

S
Stability in Linear Rational Expecta-

tions Models, 195

269

	I Multiple Agent Models
	Uncertainty Traps
	Overview
	The Model
	Fundamentals
	Output
	Information and Beliefs
	Participation

	Implementation
	Results
	Exercises

	The Aiyagari Model
	Overview
	References

	The Economy
	Households

	Firms
	Equilibrium

	Code

	Default Risk and Income Fluctuations
	Overview
	Structure
	Output, Consumption and Debt
	Asset Markets
	Financial Markets
	Government’s Decisions
	Reentering International Credit Market

	Equilibrium
	Definition of Equilibrium

	Computation
	Results
	Exercises

	Globalization and Cycles
	Overview
	Background

	Key Ideas
	Innovation Cycles
	Synchronization

	Model
	Prices
	New Varieties
	Law of Motion

	Simulation
	Time Series of Firm Measures
	Basin of Attraction

	Exercises

	Coase’s Theory of the Firm
	Overview
	Why Firms Exist
	A Trade-Off
	Summary
	A Quantitative Interpretation

	The Model
	Subcontracting
	Costs

	Equilibrium
	Informal Definition of Equilibrium
	Formal Definition of Equilibrium

	Existence, Uniqueness and Computation of Equilibria
	A Fixed Point Method
	Marginal Conditions

	Implementation
	Exercises

	II Auctions & Other Applications
	First-Price and Second-Price Auctions
	First-Price Sealed-Bid Auction (FPSB)
	Characterization of FPSB Auction

	Second-Price Sealed-Bid Auction (SPSB)
	Characterization of SPSB Auction
	Uniform Distribution of Private Values
	Setup
	First price sealed bid auction
	Second Price Sealed Bid Auction
	Python Code
	Revenue Equivalence Theorem
	Calculation of Bid Price in FPSB
	χ2 Distribution
	5 Code Summary
	References

	Multiple Good Allocation Mechanisms
	Overview
	Ascending Bids Auction for Multiple Goods
	A Benevolent Planner
	Equivalence of Allocations
	Ascending Bid Auction
	Basic Setting

	Pseudocode
	An Example
	round 1
	round 2
	round 3
	round 4
	round 5

	A Python Class
	Robustness Checks
	A Groves-Clarke Mechanism
	An Example Solved by Hand
	Another Python Class
	Elaborations
	Social Cost

	III Rational Expectation Models
	Cass-Koopmans Model
	Overview
	The Model
	Digression: Aggregation Theory
	An Economy

	Planning Problem
	Useful Properties of Linearly Homogeneous Production Function
	First-order necessary conditions

	Shooting Algorithm
	Setting Initial Capital to Steady State Capital
	A Turnpike Property
	A Limiting Infinite Horizon Economy
	Exercise

	Concluding Remarks

	Cass-Koopmans Competitive Equilibrium
	Overview
	Review of Cass-Koopmans Model
	Planning Problem

	Competitive Equilibrium
	Market Structure
	Prices

	Firm Problem
	Zero Profit Conditions

	Household Problem
	Definitions

	Computing a Competitive Equilibrium
	Guess for Price System
	Verification Procedure
	Household’s Lagrangian
	Representative Firm’s Problem
	Varying Curvature

	Yield Curves and Hicks-Arrow Prices

	Rational Expectations Equilibrium
	Overview
	The Big Y, little y Trick
	A Simple Static Example of the Big Y, little y Trick

	Related Planning Problem
	Further Reading

	Rational Expectations Equilibrium
	Competitive Equilibrium with Adjustment Costs
	The Firm’s Problem
	Prices and Aggregate Output
	Representative Firm’s Beliefs
	Optimal Behavior Given Beliefs
	Characterization with First-Order Necessary Conditions
	The Actual Law of Motion for Output

	Definition of Rational Expectations Equilibrium
	Fixed Point Characterization

	Computing an Equilibrium
	Failure of Contractivity
	A Planning Problem Approach
	Solution of Planning Problem
	Key Insight
	Structure of the Law of Motion

	Exercises

	Stability in Linear Rational Expectations Models
	Overview
	Linear Difference Equations
	First Order
	Second Order

	Illustration: Cagan’s Model
	Some Python Code
	Alternative Code
	Special Case

	Another Perspective
	Refining the Formula
	Remarks about Feedback

	Log money Supply Feeds Back on Log Price Level
	Big P, Little p Interpretation
	Fun with SymPy

	Markov Perfect Equilibrium
	Overview
	Background
	Example: A Duopoly Model
	Computation

	Linear Markov Perfect Equilibria
	Coupled Linear Regulator Problems
	Computing Equilibrium
	Key Insight
	Infinite Horizon

	Implementation

	Application
	A Duopoly Model
	Parameters and Solution
	Dynamics

	Exercises

	Knowing the Forecasts of Others
	Introduction
	A Sequence of Models

	The Setting
	Tactics
	Equilibrium Conditions
	Equilibrium under perfect foresight

	Equilibrium with θt stochastic but observed at t
	Filtering
	One noisy signal
	State-reconstruction error

	A new state variable
	Two Noisy Signals

	Guess-and-Verify Tactic
	Equilibrium with One Noisy Signal on θt
	Step 1: Solve for λ and λ
	Step 2: Solve for p
	Step 3: Represent the system using quantecon.LinearStateSpace
	Step 4: Compute impulse response functions
	Step 5: Compute stationary covariance matrices and population regressions

	Equilibrium with Two Noisy Signals on θt
	Key Step
	An observed common shock benchmark
	Comparison of All Signal Structures
	Notes on History of the Problem
	Further historical remarks

	IV Other
	Troubleshooting
	Fixing Your Local Environment
	Reporting an Issue

	References
	Execution Statistics
	Bibliography
	Index

